
How to write a for loop to generate a new set of initial conditions based on a input value that changes over different time intervals.
2 views (last 30 days)
Show older comments
I have a ODE system with four equations and a input variable "Input".
I would like to show the output of species B, C and Input on seperate plots over time, similar to the plots attached in the screenshot (generated in Python).
The Input changes over time as follows:
Input = 0.5 for t < 50,
Input = 1 for t < 100,
Input = 1.5 for t < 150,
Input = 1 for t < 200,
Input = 0.5 for t < 250.
The Matlab code I have so far is:
% Set the initial values
A = 1;
B = 1;
C = 1;
D = 1;
Input = 1;
% Set the model parameters
k1 = 1;
k2 = 3;
k3 = 2;
k4 = 1;
k5 = 50;
k6 = 1;
k = [k1,k2,k3,k4,k5,k6];
init = [A B C D];
tspan = [0 200];
%t = linspace (0,200,100);
Looping Process
%Add code here..
% Perform the numerical integration
[t,u] = ode45(@(t,u) gene(t,u,k,Input), tspan, init);
plot(t,u(:,1),'--', t,u(:,2),'-', t,u(:,3),'--',t,u(:,4),'--','LineWidth',2.0)
title('');
xlabel('Time t');
ylabel('Solution y');legend('u_1','u_2','u_3','u_4')
ODE System
function eqns = gene(t,u,k,Input)
eqns = zeros(4,1); % To start with we havefour empty equations
% Using u = [A B C D]
% Using k = [k1,k2,k3,k4,k5,k6]
eqns(1) = k(1)*u(4) - k(2)*u(1);
eqns(2) = k(3)*Input*u(1) - k(4)*u(2);
eqns(3) = k(4)*u(2) - k(5)*u(3)*u(4);
eqns(4) = k(6) - k(5)*u(3)*u(4);
end
Thanks in advance.
0 Comments
Accepted Answer
William Rose
on 22 Dec 2022
See attached code. I think you will be able to uunderstand what I have done by comparing the code to your version. It generates the plot below. I define Input inside function gene(). Good luck!

2 Comments
More Answers (1)
VBBV
on 22 Dec 2022
Edited: VBBV
on 22 Dec 2022
% Set the initial values
A = 1;
B = 1;
C = 1;
D = 1;
% % Input = 1;
% Set the model parameters
k1 = 1;
k2 = 3;
k3 = 2;
k4 = 1;
k5 = 50;
k6 = 1;
k = [k1,k2,k3,k4,k5,k6];
init = [A B C D];
tspan = [0 250];
%t = linspace (0,200,100);
Input = [0.5 1 1.5 1 0.5];
[t1,u1] = ode45(@(t,u) gene(t,u,k,Input(1)), tspan, init);
idx1 = find(t1 < 50);
[t2,u2] = ode45(@(t,u) gene(t,u,k,Input(2)), tspan, init);
idx2 = find(t2 > 50 & t2 < 100 );
[t3,u3] = ode45(@(t,u) gene(t,u,k,Input(3)), tspan, init);
idx3 = find(t3 > 100 & t3 < 150 );
[t4,u4] = ode45(@(t,u) gene(t,u,k,Input(4)), tspan, init);
idx4 = find(t4 > 150 & t4 < 200 );
[t5,u5] = ode45(@(t,u) gene(t,u,k,Input(5)), tspan, init);
idx5 = find(t5 > 200 & t5 < 250 );
t = [t1(idx1); t2(idx2); t3(idx3); t4(idx4); t5(idx5)];
U1 = [u1(idx1,1); u2(idx2,1); u3(idx3,1); u4(idx4,1); u5(idx5,1)];
U2 = [u1(idx1,2); u2(idx2,2); u3(idx3,2); u4(idx4,2); u5(idx5,2)];
U3 = [u1(idx1,3); u2(idx2,3); u3(idx3,3); u4(idx4,3); u5(idx5,3)];
U4 = [u1(idx1,4); u2(idx2,4); u3(idx3,4); u4(idx4,4); u5(idx5,4)];
figure(1)
plot(t,U1,t,U2,'--',t,U3,'-.',t,U4,'k-')
title('');
xlabel('Time t');
ylabel('Solution y');
legend('u_1','u_2','u_3','u_4')
% ODE System
function eqns = gene(t,u,k,Input)
eqns = zeros(4,1); % To start with we havefour empty equations
% Using u = [A B C D]
% Using k = [k1,k2,k3,k4,k5,k6]
eqns(1) = k(1)*u(4) - k(2)*u(1);
eqns(2) = k(3)*Input*u(1) - k(4)*u(2);
eqns(3) = k(4)*u(2) - k(5)*u(3)*u(4);
eqns(4) = k(6) - k(5)*u(3)*u(4);
end
8 Comments
See Also
Categories
Find more on Monte Carlo Analysis in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!