How to keep a specific value in binary matrix with column constraint?
1 view (last 30 days)
Show older comments
Hello!
i have a binary matrix A(10*10) , i want to return '1' to '0' to get a single one in each row. I'm wondering how I can do this, knowing that I can keep a '1' in different columns except the last column, i.e. the last column cannot contain a '1'.
A [1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1]
0 Comments
Accepted Answer
Fangjun Jiang
on 9 Sep 2022
Edited: Fangjun Jiang
on 9 Sep 2022
N=10;
A=eye(N);
B=A(:,randperm(N));% shuffle the Identity matrix randomly
RandCol=randi(N-1);
B(:,RandCol)=B(:,RandCol)+B(:,end);% move the 1 in last column randomly to the left
B(:,end)=0
% To verify
sum(B)
sum(B,2)
27 Comments
More Answers (1)
Torsten
on 17 Sep 2022
Edited: Torsten
on 17 Sep 2022
Your last question was quite interesting - so I invested some time ...
If A becomes larger, you will have to work with sparse inputs to intlinprog.
%rng('default')
% n = 100; % number of rows of A
% m = 60; % number of columns of A
n = 200; % number of rows of A
m = 120; % number of columns of A
bound_ones = 5; % bound for column sums of B
A = randi([0 1],n,m); % generate random binary matrix
%
% Usually, nothing needs to be changed after this line
if any(sum(A,2)==0)
display('Matrix A inappropriate.');
return
end
s = nnz(A);
%
% Objective function
% max: sum_ij cij = sum_ij (aij - bij)
% is equivalent to
% min: -sum_ij cij = -sum_ij (aij - bij)
f = [zeros(n*m,1);-ones(n*m,1)];
%f = zeros(2*n*m,1);
%
% Equality constraints
% cij = aij - bij
Aeq1 = zeros(n*m,2*n*m);
beq1 = zeros(n*m,1);
counter = 0;
for i = 1:n
for j = 1:m
counter = counter + 1;
Aeq1(counter,counter) = 1.0;
Aeq1(counter,counter+n*m) = 1.0;
beq1(counter) = A(i,j);
end
end
%sum_j bij = 1 (1 <= i <= n)
Aeq2 = zeros(n,2*n*m);
beq2 = zeros(n,1);
for i = 1:n
Aeq2(i,(i-1)*m+1:i*m) = 1.0;
beq2(i) = 1.0;
end
%Concatenate equality constraints
Aeq = [Aeq1;Aeq2];
beq = [beq1;beq2];
%
%Inequality constraints
%sum_i bij <= bound_ones (1 <= j <= m)
Aineq = zeros(m,2*n*m);
bineq = zeros(m,1);
for j = 1:m
Aineq(j,j:m:(n-1)*m+j) = 1.0;
bineq(j) = bound_ones;
end
%
%Integer constraints
%Define bij as integers
intcon = 1:n*m;
%
%Bound constraints
%0 <= bij <= 1 and cij = aij - bij >= 0
lb = zeros(2*n*m,1);
ub = [ones(n*m,1);Inf*ones(n*m,1)];
%
% Call intlinprog
[x,fval,exitflag,output] = intlinprog(f,intcon,Aineq,bineq,Aeq,beq,lb,ub);
%
% s + fval should equal n if x is a solution
n
s + fval
if exitflag == 1
B = x(1:n*m);
B = reshape(B,m,n).';
C = x(n*m+1:2*n*m);
C = reshape(C,m,n).';
% Check constraints
any(C~=A-B,'All')
any(C<0,'All')
any((0>B)|(B>1),'All')
any(sum(B,2)~=1)
any(sum(B,1)>bound_ones)
else
display('Matrix B does not exist')
end
B
4 Comments
Torsten
on 18 Sep 2022
Edited: Torsten
on 18 Sep 2022
%rng('default')
% n = 100; % number of rows of A
% m = 60; % number of columns of A
n = 1500; % number of rows of A
m = 1000; % number of columns of A
bound_ones = 5; % bound for column sums of B
A = randi([0 1],n,m); % generate random binary matrix
%
% Usually, nothing needs to be changed after this line
if any(sum(A,2)==0)
display('Matrix A inappropriate.');
return
end
%
% Objective function
% min: sum_ij bij
f = ones(n*m,1);
% Alternatively:
% Only search for feasible point (objective doesn't matter)
%f = zeros(n*m,1);
%
% Equality constraints
%sum_j bij = 1 (1 <= i <= n)
ir = zeros(n*m,1);
ic = zeros(n*m,1);
v = zeros(n*m,1);
for i = 1:n
ir((i-1)*m+1:i*m) = i;
ic((i-1)*m+1:i*m) = (i-1)*m+1:i*m;
v((i-1)*m+1:i*m) = 1.0;
end
Aeq = sparse(ir,ic,v,n,n*m);
beq = ones(n,1);
%Aeq = zeros(n,n*m);
%beq = zeros(n,1);
%for i = 1:n
% Aeq(i,(i-1)*m+1:i*m) = 1.0;
% beq(i) = 1.0;
%end
%
%Inequality constraints
%sum_i bij <= bound_ones (1 <= j <= m)
ir = zeros(n*m,1);
ic = zeros(n*m,1);
v = zeros(n*m,1);
for j = 1:m
ir(j:m:(n-1)*m+j) = j;
ic(j:m:(n-1)*m+j) = j:m:(n-1)*m+j;
v(j:m:(n-1)*m+j) = 1.0;
end
Aineq = sparse(ir,ic,v,m,n*m);
bineq = bound_ones*ones(m,1);
%Aineq = zeros(m,n*m);
%bineq = zeros(m,1);
%for j = 1:m
% Aineq(j,j:m:(n-1)*m+j) = 1.0;
% bineq(j) = bound_ones;
%end
%
%Integer constraints
%Define bij as integers
intcon = 1:n*m;
%
%Bound constraints
%0 <= b_ij <= a_ij
lb = zeros(n*m,1);
ub = reshape(A.',[],1);
%
% Call intlinprog
[x,fval,exitflag,output] = intlinprog(f,intcon,Aineq,bineq,Aeq,beq,lb,ub);
%
% fval should equal n if x is a solution
n
fval
if exitflag == 1
B = reshape(x,m,n).';
% Check constraints
any(B>A,'All')
any((B<0)|(B>1),'All')
any(sum(B,2)~=1)
any(sum(B,1)>bound_ones)
else
display('Matrix B does not exist')
end
B
See Also
Categories
Find more on Quadratic Programming and Cone Programming in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!