How to see actions when using the train() function in RL tool box.
2 views (last 30 days)
Show older comments
rtn
on 24 May 2022
Answered: Emmanouil Tzorakoleftherakis
on 2 Jun 2022
Hi!
I use the train() function for my matlab env. I would like to also see the action input into the step function at each of the training steps. Is that possible? So far I only get the agent.
clear all
clc
close all
%load agent1.mat
ObservationInfo = rlNumericSpec([4 1501]);
ObservationInfo.Name = 'CartPole States';
ObservationInfo.Description = 'pendulum_force, cart position, cart velocity';
%ActionInfo = rlNumericSpec([1 1]);
ActionInfo = rlNumericSpec([2 1],'LowerLimit',[-1*pi/2;-1*pi],'UpperLimit',[pi/2;pi]);
ActionInfo.Name = 'CartPole Action';
env = rlFunctionEnv(ObservationInfo,ActionInfo,'myHapticStepFunction','myHapticResetFunction');
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
rng('shuffle')
%%
clc
load TD3_Haptic_MIMO
agent = TD3_Haptic_MIMO;
%Extract the deep neural networks from both the agent actor and critic.
actorNet = getModel(getActor(agent));
criticNet = getModel(getCritic(agent));
%Display the layers of the critic network, and verify that each hidden fully connected layer has 128 neurons
criticNet.Layers
% figure()
% plot(layerGraph(actorNet))
% figure()I wou
% plot(layerGraph(criticNet))
temp = getAction(agent,{rand(obsInfo.Dimension)})
%%
maxepisodes = 140;
maxsteps = 1;
trainOpts = rlTrainingOptions(...
'MaxEpisodes',maxepisodes,...
'MaxStepsPerEpisode',maxsteps,...
'ScoreAveragingWindowLength',5,...
'Verbose',false,...
'Plots','training-progress',...
'StopTrainingCriteria','AverageReward',...
'StopTrainingValue',1.5, 'SaveAgentCriteria',"EpisodeReward",'SaveAgentValue',1.4',...
'SaveAgentDirectory', pwd + "\Haptic\run1");
% LOOK INTO SAVING AGENT VALUE
% https://www.mathworks.com/help/reinforcement-learning/ug/train-reinforcement-learning-policy-using-custom-training.html
% https://www.mathworks.com/help/reinforcement-learning/ug/train-reinforcement-learning-agents.html
%https://www.mathworks.com/help/reinforcement-learning/ref/rltrainingoptions.html
trainingStats = train(agent,env,trainOpts);
0 Comments
Accepted Answer
Emmanouil Tzorakoleftherakis
on 2 Jun 2022
Hello,
To log action data throughout an episode, you would need to do so from inside the step function of your environment. You can save actions into a mat/csv file as needed from there.
Hope this helps
0 Comments
More Answers (0)
See Also
Categories
Find more on Agents in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!