This code shows the FIR filter magnitude response with the normalized frequency from 0 to pi, how i can make mirroring of this magnitude response to start from -pi to pi ??
19 views (last 30 days)
Show older comments
This code shows the FIR filter magnitude response with the normalized frequency through interval from [0 to pi] in a figure, my question is how i can make mirroring of this magnitude response to start through interval from [-pi to pi] ??
clc;
close all;
clear all;
n1= 15; %order
Fs= 100; %sampling frequency
fc= Fs/4; %cutoff frequency
%nyq_f= Fs/2; %normalize cutoff frequency wrt to nyquist freq
%wn= fc/nyq_f; %normalized fc
wc= (2*pi*fc)/Fs;
wn= wc/pi;
%window= hamming(n+1)
H1= fir1(n1,wn,hamming(n1+1));
h1= freqz(H1); %frequency response
f1= linspace(0,Fs/2,512);
w1= (2*pi*f1)/Fs;
w= w1/pi;
plot (w, abs(h1))
axis([0 1 -0.1 1.1])
0 Comments
Answers (1)
Mathieu NOE
on 9 May 2022
hello
here you are (nothing fancy !)
clc;
close all;
clear all;
n1= 15; %order
Fs= 100; %sampling frequency
fc= Fs/4; %cutoff frequency
%nyq_f= Fs/2; %normalize cutoff frequency wrt to nyquist freq
%wn= fc/nyq_f; %normalized fc
wc= (2*pi*fc)/Fs;
wn= wc/pi;
%window= hamming(n+1)
H1= fir1(n1,wn,hamming(n1+1));
h1= freqz(H1); %frequency response
f1= linspace(0,Fs/2,512);
w1= (2*pi*f1)/Fs;
w= w1/pi;
h1_mag = abs(h1);
plot (w, h1_mag)
axis([0 1 -0.1 1.1])
% This code shows the FIR filter magnitude response with the normalized frequency through interval from [0 to pi] in a figure,
% my question is how i can make mirroring of this magnitude response to start through interval from [-pi to pi] ??
w_flip = flip(w);
h1_mag_flip = flip(h1_mag);
w_all = [-w_flip(1:end-1) w];
h1_mag_all = [h1_mag_flip(1:end-1); h1_mag];
plot (w_all, h1_mag_all)
axis([-1 1 -0.1 1.1])
0 Comments
See Also
Categories
Find more on Filter Design in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!