# Gussian Curvature calculation problem

3 views (last 30 days)
Ashkan Rigi on 17 Nov 2021
Answered: Mathieu NOE on 18 Nov 2021
Hello everybody. I have found the below codes on the net which can calculate the gussian curvature but I can not work with that becasuse I have the error of " too many input arguments". I would be thankful if someone help me to use this function.
function [K,H,Pmax,Pmin] = surfature(X,Y,Z),
% SURFATURE - COMPUTE GAUSSIAN AND MEAN CURVATURES OF A SURFACE
% [K,H] = SURFATURE(X,Y,Z), WHERE X,Y,Z ARE 2D ARRAYS OF POINTS ON THE
% SURFACE. K AND H ARE THE GAUSSIAN AND MEAN CURVATURES, RESPECTIVELY.
% SURFATURE RETURNS 2 ADDITIONAL ARGUEMENTS,
% [K,H,Pmax,Pmin] = SURFATURE(...), WHERE Pmax AND Pmin ARE THE MINIMUM
% AND MAXIMUM CURVATURES AT EACH POINT, RESPECTIVELY.
% First Derivatives
% Second Derivatives
% Reshape 2D Arrays into Vectors
Xu = Xu(:); Yu = Yu(:); Zu = Zu(:);
Xv = Xv(:); Yv = Yv(:); Zv = Zv(:);
Xuu = Xuu(:); Yuu = Yuu(:); Zuu = Zuu(:);
Xuv = Xuv(:); Yuv = Yuv(:); Zuv = Zuv(:);
Xvv = Xvv(:); Yvv = Yvv(:); Zvv = Zvv(:);
Xu = [Xu Yu Zu];
Xv = [Xv Yv Zv];
Xuu = [Xuu Yuu Zuu];
Xuv = [Xuv Yuv Zuv];
Xvv = [Xvv Yvv Zvv];
% First fundamental Coeffecients of the surface (E,F,G)
E = dot(Xu,Xu,2);
F = dot(Xu,Xv,2);
G = dot(Xv,Xv,2);
m = cross(Xu,Xv,2);
p = sqrt(dot(m,m,2));
n = m./[p p p];
% Second fundamental Coeffecients of the surface (L,M,N)
L = dot(Xuu,n,2);
M = dot(Xuv,n,2);
N = dot(Xvv,n,2);
[s,t] = size(Z);
% Gaussian Curvature
K = (L.*N - M.^2)./(E.*G - F.^2);
K = reshape(K,s,t);
% Mean Curvature
H = (E.*N + G.*L - 2.*F.*M)./(2*(E.*G - F.^2));
H = reshape(H,s,t);
% Principal Curvatures
Pmax = H + sqrt(H.^2 - K);
Pmin = H - sqrt(H.^2 - K);
Rik on 18 Nov 2021
Also, what you posted is not a valid way to call your function. It will result in this error:
Error: Function definition not supported in this context. Create functions in code file.

Mathieu NOE on 18 Nov 2021
hello
your function do work if your input data is 2D arrays and not vectors as you did
also remove the comma at the end of this line :
function [K,H,Pmax,Pmin] = surfature(X,Y,Z),
clc
clearvars
% dummy data
N = 25;
[X,Y,Z] = peaks(N);
% plot
figure
surf(X,Y,Z);
[K,H,Pmax,Pmin] = surfature(X,Y,Z)
function [K,H,Pmax,Pmin] = surfature(X,Y,Z)
% SURFATURE - COMPUTE GAUSSIAN AND MEAN CURVATURES OF A SURFACE
% [K,H] = SURFATURE(X,Y,Z), WHERE X,Y,Z ARE 2D ARRAYS OF POINTS ON THE
% SURFACE. K AND H ARE THE GAUSSIAN AND MEAN CURVATURES, RESPECTIVELY.
% SURFATURE RETURNS 2 ADDITIONAL ARGUEMENTS,
% [K,H,Pmax,Pmin] = SURFATURE(...), WHERE Pmax AND Pmin ARE THE MINIMUM
% AND MAXIMUM CURVATURES AT EACH POINT, RESPECTIVELY.
% First Derivatives
% Second Derivatives
% Reshape 2D Arrays into Vectors
Xu = Xu(:); Yu = Yu(:); Zu = Zu(:);
Xv = Xv(:); Yv = Yv(:); Zv = Zv(:);
Xuu = Xuu(:); Yuu = Yuu(:); Zuu = Zuu(:);
Xuv = Xuv(:); Yuv = Yuv(:); Zuv = Zuv(:);
Xvv = Xvv(:); Yvv = Yvv(:); Zvv = Zvv(:);
Xu = [Xu Yu Zu];
Xv = [Xv Yv Zv];
Xuu = [Xuu Yuu Zuu];
Xuv = [Xuv Yuv Zuv];
Xvv = [Xvv Yvv Zvv];
% First fundamental Coeffecients of the surface (E,F,G)
E = dot(Xu,Xu,2);
F = dot(Xu,Xv,2);
G = dot(Xv,Xv,2);
m = cross(Xu,Xv,2);
p = sqrt(dot(m,m,2));
n = m./[p p p];
% Second fundamental Coeffecients of the surface (L,M,N)
L = dot(Xuu,n,2);
M = dot(Xuv,n,2);
N = dot(Xvv,n,2);
[s,t] = size(Z);
% Gaussian Curvature
K = (L.*N - M.^2)./(E.*G - F.^2);
K = reshape(K,s,t);
% Mean Curvature
H = (E.*N + G.*L - 2.*F.*M)./(2*(E.*G - F.^2));
H = reshape(H,s,t);
% Principal Curvatures
Pmax = H + sqrt(H.^2 - K);
Pmin = H - sqrt(H.^2 - K);
end