Interactive Calculus in Live Editor
This example shows how you can add interactive controls to solve a calculus problem in a live script.
Adding Interactive Controls to Your Script
An interactive control can be used to change the values of variables in your live script. To add a numeric slider, go to the Insert tab, click the Control button, and select Slider. For more information, see Add Interactive Controls to a Live Script.
Initialize Variables and Function
Evaluate the integral
using Riemann sum approximation.
A Riemann sum is a numerical approximation of the analytical integration by a finite sum of rectangular areas. Use the interactive slider bars to set the upper bound of the integral, the number of rectangles, and the constant factor of the function.
syms x; xMax = 4; numRectangles = 30; c = 2.5; f(x) = c*x^2; yMax = double(f(xMax));
Visualize the Area Under the Curve Using Riemann Sums
Plot the integrand f
.
fplot(f); xlim([0 xMax]); ylim([0 yMax]); legend({},Location="north",FontSize=20); title("Riemann Sum",FontSize=20);
Calculate the rectangular areas that approximate the area under the curve of the integral. Plot the rectangles.
width = xMax/numRectangles; sum = 0; for i = 0:numRectangles-1 xval = i*width; height = double(f(xval)); rectangle(Position=[xval 0 width height],EdgeColor="r"); sum = sum + width*height; end text(xMax/10,yMax/3,["Area = " num2str(sum)],FontSize=20);
Calculate the Integral Analytically
Calculate the integral analytically. Use vpa
to numerically approximate the exact symbolic result to 32 significant digits.
fInt = int(f,0,xMax)
fInt =
vpa(fInt)
ans =