crossval
Cross validate ensemble
Syntax
cvens = crossval(ens)
cvens = crossval(ens,Name,Value)
Description
creates a cross-validated ensemble from cvens
= crossval(ens
)ens
, a regression ensemble.
Default is 10-fold cross validation.
creates a cross-validated ensemble with additional options specified by one or more
cvens
= crossval(ens
,Name,Value
)Name,Value
pair arguments. You can specify several name-value pair
arguments in any order as Name1,Value1,…,NameN,ValueN
.
Input Arguments
|
A regression ensemble created with |
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
|
A partition of class Use no more than one of the name-value pairs |
|
Holdout validation tests the specified fraction of the data, and uses the
rest of the data for training. Specify a numeric scalar from
|
|
Number of folds for cross validation, a positive integer value greater than 1. Use no more than one of the name-value pairs |
|
If Use no more than one of the name-value pairs |
|
Printout frequency, a positive integer scalar. Use this parameter to observe the training of cross-validation folds. Default: |
Output Arguments
|
A cross-validated classification ensemble of class |
Examples
Alternatives
You can create a cross-validation ensemble directly from the data, instead of creating
an ensemble followed by a cross-validation ensemble. To do so, include one of these five
options in fitrensemble
: 'crossval'
,
'kfold'
, 'holdout'
, 'leaveout'
,
or 'cvpartition'
.