outlierMeasure
Outlier measure for data in ensemble of decision trees
Syntax
out = outlierMeasure(B,X)
out = outlierMeasure(B,X,'param1',val1,'param2',val2,...)
Description
out = outlierMeasure(B,X)
computes outlier measures for predictors
X
using trees in the ensemble B
. The method computes the
outlier measure for a given observation by taking an inverse of the average squared proximity
between this observation and other observations. outlierMeasure
then
normalizes these outlier measures by subtracting the median of their distribution, taking the
absolute value of this difference, and dividing by the median absolute deviation. A high value of
the outlier measure indicates that this observation is an outlier.
You can supply the proximity matrix directly by using the 'Data'
parameter.
out = outlierMeasure(B,X,'param1',val1,'param2',val2,...)
specifies
optional parameter name/value pairs:
'Data' | Flag indicating how to treat the X input argument. If set to
'predictors' (default), the method assumes X is a
matrix of predictors and uses it for computation of the proximity matrix. If set to
'proximity' , the method treats X as a proximity
matrix returned by the proximity method. If you do not supply the
proximity matrix, outlierMeasure computes it internally. If you use the
proximity method to compute a proximity matrix, supplying it as input to
outlierMeasure reduces computing time. |
'Labels' | Vector of true class labels. True class labels can be a numeric vector, character
matrix, string array, or cell array of character vectors. When you supply this parameter,
the method performs the outlier calculation for any observations using only other
observations from the same class. This parameter must specify one label for each observation
(row) in X . |