IGBT
Implement insulated gate bipolar transistor (IGBT)
Library
Simscape / Electrical / Specialized Power Systems / Power Electronics
Description
The IGBT block implements a semiconductor device controllable by the gate signal. The IGBT is simulated as a series combination of a resistor Ron, inductor Lon, and a DC voltage source Vf in series with a switch controlled by a logical signal (g > 0 or g = 0).
The IGBT turns on when the collector-emitter voltage is positive and greater than Vf and a positive signal is applied at the gate input (g > 0). It turns off when the collector-emitter voltage is positive and a 0 signal is applied at the gate input (g = 0).
The IGBT device is in the off state when the collector-emitter voltage is negative. Note that many commercial IGBTs do not have the reverse blocking capability. Therefore, they are usually used with an antiparallel diode.
The IGBT block contains a series Rs-Cs snubber circuit, which is connected in parallel with the IGBT device (between terminals C and E).
The turnoff characteristic of the IGBT model is approximated by two segments. When the gate signal falls to 0, the collector current decreases from Imax to 0.1 Imax during the fall time (Tf), and then from 0.1 Imax to 0 during the tail time (Tt).
Parameters
- Resistance Ron
The internal resistance Ron, in ohms (Ω). Default is
0.001
. The Resistance Ron parameter cannot be set to0
when the Inductance Lon parameter is set to 0.- Inductance Lon
The internal inductance Lon, in henries (H). Default is
0
. The Inductance Lon parameter is normally set to0
except when the Resistance Ron parameter is set to0
.- Forward voltage Vf
The forward voltage of the IGBT device, in volts (V). Default is
1
.- Initial current Ic
You can specify an initial current flowing in the IGBT. Default is
0
. It is usually set to0
to start the simulation with the device blocked.If the Initial Current IC parameter is set to a value greater than
0
, the steady-state calculation considers the initial status of the IGBT as closed. Initializing all states of a power electronic converter is a complex task. Therefore, this option is useful only with simple circuits.- Snubber resistance Rs
The snubber resistance, in ohms (Ω). Default is
1e5
. Set the Snubber resistance Rs parameter toinf
to eliminate the snubber from the model.- Snubber capacitance Cs
The snubber capacitance in farads (F). Default is
inf
. Set the Snubber capacitance Cs parameter to0
to eliminate the snubber, or toinf
to get a resistive snubber.- Show measurement port
If selected, add a Simulink® output to the block returning the diode IGBT current and voltage. Default is selected.
Inputs and Outputs
g
Simulink signal to control the opening and closing of the IGBT.
m
The Simulink output of the block is a vector containing two signals. You can demultiplex these signals by using the Bus Selector block provided in the Simulink library.
Signal
Definition
Units
1
IGBT current
A
2
IGBT voltage
V
Assumptions and Limitations
The IGBT block implements a macro model of the real IGBT device. It does not take into account either the geometry of the device or the complex physical processes [1].
Depending on the value of the inductance Lon, the IGBT is modeled either as a current source (Lon > 0) or as a variable topology circuit (Lon = 0). The IGBT block cannot be connected in series with an inductor, a current source, or an open circuit, unless its snubber circuit is in use.
The inductance Lon is forced to 0 if you choose to discretize your circuit.
Examples
The power_igbtconv
example illustrates the use of the IGBT block in a boost DC-DC converter. The IGBT is switched
on and off at a frequency of 10 kHz to transfer energy from the DC source to the load (RC). The
average output voltage (VR) is a function of the duty cycle (α) of the
IGBT switch:
References
[1] Mohan, N., T.M. Undeland, and W.P. Robbins, Power Electronics: Converters, Applications, and Design, John Wiley & Sons, Inc., New York, 1995.
See Also
Version History
Introduced before R2006a