Revision History

December 1996 First printing For MATLAB 5
May 1997 Second printing For MATLAB 5.1
September 1998 Third printing For MATLAB 5.3
September 2000 Fourth printing Revised for MATLAB 6 (Release 12)
June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for MATLAB 6.5 (Release 13)
August 2002 Fifth printing Revised for MATLAB 6.5
June 2004 Sixth printing Revised for MATLAB 7.0 (Release 14)
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online only Revised for MATLAB 7.0.4 (Release 14SP2)
June 2005 Seventh printing Minor revision for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Minor revision for MATLAB 7.2 (Release 2006a)
September 2006 Eighth printing Minor revision for MATLAB 7.3 (Release 2006b)
March 2007 Ninth printing Minor revision for MATLAB 7.4 (Release 2007a)
September 2007 Tenth printing Minor revision for MATLAB 7.5 (Release 2007b)
March 2008 Eleventh printing Minor revision for MATLAB 7.6 (Release 2008a)
October 2008 Twelfth printing Minor revision for MATLAB 7.7 (Release 2008b)
March 2009 Thirteenth printing Minor revision for MATLAB 7.8 (Release 2009a)
September 2009 Fourteenth printing Minor revision for MATLAB 7.9 (Release 2009b)
March 2010 Fifteenth printing Minor revision for MATLAB 7.10 (Release 2010a)
September 2010 Sixteenth printing Revised for MATLAB 7.11 (R2010b)
April 2011 Online only Revised for MATLAB 7.12 (R2011a)
September 2011 Seventeenth printing Revised for MATLAB 7.13 (R2011b)
March 2012 Eighteenth printing Revised for Version 7.14 (R2012a)
(Renamed from MATLAB Getting Started Guide)
September 2012 Nineteenth printing Revised for Version 8.0 (R2012b)
March 2013 Twentieth printing Revised for Version 8.1 (R2013a)
September 2013 Twenty-first printing Revised for Version 8.2 (R2013b)
March 2014 Twenty-second printing Revised for Version 8.3 (R2014a)
October 2014 Twenty-third printing Revised for Version 8.4 (R2014b)
March 2015 Twenty-fourth printing Revised for Version 8.5 (R2015a)
September 2015 Twenty-fifth printing Revised for Version 8.6 (R2015b)
March 2016 Twenty-sixth printing Revised for Version 9.0 (R2016a)
September 2016 Twenty-seventh printing Revised for Version 9.1 (R2016b)
March 2017 Twenty-eighth printing Revised for Version 9.2 (R2017a)
September 2017 Twenty-ninth printing Revised for Version 9.3 (R2017b)
March 2018 Thirtieth printing Revised for Version 9.4 (R2018a)
September 2018 Thirty-first printing Revised for Version 9.5 (R2018b)
March 2019 Online only Revised for Version 9.6 (R2019a)
September 2019 Online only Revised for Version 9.7 (R2019b)
March 2020 Online only Revised for Version 9.8 (R2020a)
September 2020 Online only Revised for Version 9.9 (R2020b)
Quick Start

MATLAB Product Description .. 1-2
 Key Features .. 1-2

Desktop Basics ... 1-3

Matrices and Arrays .. 1-5

Array Indexing .. 1-9

Workspace Variables .. 1-11

Text and Characters .. 1-12
 Text in String Arrays .. 1-12
 Data in Character Arrays .. 1-13

Calling Functions ... 1-14

2-D and 3-D Plots ... 1-15

Programming and Scripts ... 1-21
 Scripts ... 1-21
 Live Scripts .. 1-22
 Loops and Conditional Statements 1-22
 Script Locations ... 1-23

Help and Documentation ... 1-24

Language Fundamentals

Matrices and Magic Squares ... 2-2
 About Matrices ... 2-2
 Entering Matrices ... 2-3
 sum, transpose, and diag ... 2-4
 The magic Function ... 2-5
 Generating Matrices .. 2-6

Expressions ... 2-7
 Variables ... 2-7
 Numbers ... 2-7
Matrix Operators ... 2-8
Array Operators ... 2-9
Functions .. 2-10
Examples of Expressions 2-11

Entering Commands .. 2-12
 The format Function 2-12
 Suppressing Output 2-13
 Entering Long Statements 2-13
 Command Line Editing 2-13

Indexing .. 2-14
 Subscripts .. 2-14
 The Colon Operator 2-15
 Concatenation 2-16
 Deleting Rows and Columns 2-16
 Scalar Expansion 2-17
 Logical Subscripting 2-17
 The find Function 2-18

Types of Arrays ... 2-19
 Multidimensional Arrays 2-19
 Cell Arrays ... 2-21
 Characters and Text 2-22
 Structures .. 2-24

Mathematics

Linear Algebra .. 3-2
 Matrices in the MATLAB Environment 3-2
 Systems of Linear Equations 3-10
 Factorizations 3-19
 Powers and Exponentials 3-24
 Eigenvalues ... 3-28
 Singular Values 3-30

Operations on Nonlinear Functions 3-35
 Function Handles 3-35
 Function Functions 3-35

Multivariate Data 3-38

Data Analysis .. 3-39
 Introduction .. 3-39
 Preprocessing Data 3-39
 Summarizing Data 3-44
 Visualizing Data 3-47
 Modeling Data 3-56
Basic Plotting Functions
- Creating a Plot ... 4-2
- Plotting Multiple Data Sets in One Graph 4-4
- Specifying Line Styles and Colors 4-6
- Plotting Lines and Markers 4-7
- Graphing Imaginary and Complex Data 4-8
- Adding Plots to an Existing Graph 4-9
- Figure Windows ... 4-10
- Displaying Multiple Plots in One Figure 4-11
- Controlling the Axes ... 4-11
- Adding Axis Labels and Titles 4-13
- Saving Figures .. 4-14
- Saving Workspace Data 4-14

Creating Mesh and Surface Plots
- About Mesh and Surface Plots 4-15
- Visualizing Functions of Two Variables 4-15

Display Images
- Image Data ... 4-20
- Reading and Writing Images 4-21

Printing Graphics
- Overview of Printing 4-23
- Printing from the File Menu 4-23
- Exporting the Figure to a Graphics File 4-23
- Using the Print Command 4-23

Working with Graphics Objects
- Graphics Objects .. 4-25
- Setting Object Properties 4-27
- Functions for Working with Objects 4-28
- Passing Arguments .. 4-29
- Finding the Handles of Existing Objects 4-30

Control Flow
- Conditional Control — if, else, switch 5-2
- Loop Control — for, while, continue, break 5-4
- Program Termination — return 5-6
- Vectorization ... 5-6
- Preallocation .. 5-6

Scripts and Functions
- Overview .. 5-8
- Scripts .. 5-8
Functions .. 5-9
Types of Functions ... 5-10
Global Variables ... 5-12
Command vs. Function Syntax 5-12
Quick Start

• “MATLAB Product Description” on page 1-2
• “Desktop Basics” on page 1-3
• “Matrices and Arrays” on page 1-5
• “Array Indexing” on page 1-9
• “Workspace Variables” on page 1-11
• “Text and Characters” on page 1-12
• “Calling Functions” on page 1-14
• “2-D and 3-D Plots” on page 1-15
• “Programming and Scripts” on page 1-21
• “Help and Documentation” on page 1-24
MATLAB Product Description

Millions of engineers and scientists worldwide use MATLAB to analyze and design the systems and products transforming our world. MATLAB is in automobile active safety systems, interplanetary spacecraft, health monitoring devices, smart power grids, and LTE cellular networks. It is used for machine learning, signal processing, image processing, computer vision, communications, computational finance, control design, robotics, and much more.

The MATLAB platform is optimized for solving engineering and scientific problems. The matrix-based MATLAB language is the world’s most natural way to express computational mathematics. Built-in graphics make it easy to visualize and gain insights from data. A vast library of pre-built toolboxes lets you get started right away with algorithms essential to your domain. The desktop environment invites experimentation, exploration, and discovery. These MATLAB tools and capabilities are all rigorously tested and designed to work together.

Scale. Integrate. Deploy.

MATLAB helps you take your ideas beyond the desktop. You can run your analyses on larger data sets, and scale up to clusters and clouds. MATLAB code can be integrated with other languages, enabling you to deploy algorithms and applications within web, enterprise, and production systems.

Key Features

• High-level language for scientific and engineering computing
• Desktop environment tuned for iterative exploration, design, and problem-solving
• Graphics for visualizing data and tools for creating custom plots
• Apps for curve fitting, data classification, signal analysis, control system tuning, and many other tasks
• Add-on toolboxes for a wide range of engineering and scientific applications
• Tools for building applications with custom user interfaces
• Interfaces to C/C++, Java®, .NET, Python, SQL, Hadoop, and Microsoft® Excel®
• Royalty-free deployment options for sharing MATLAB programs with end users
Desktop Basics

When you start MATLAB, the desktop appears in its default layout.

The desktop includes these panels:

- **Current Folder** — Access your files.
- **Command Window** — Enter commands at the command line, indicated by the prompt (>>).
- **Workspace** — Explore data that you create or import from files.

As you work in MATLAB, you issue commands that create variables and call functions. For example, create a variable named `a` by typing this statement at the command line:

```
a = 1
```

MATLAB adds variable `a` to the workspace and displays the result in the Command Window.

```
a = 
    1
```

Create a few more variables.

```
b = 2
b = 
    2
c = a + b
c = 
    3
d = \cos(a)
```
d =

0.5403

When you do not specify an output variable, MATLAB uses the variable ans, short for answer, to store the results of your calculation.

\[\sin(a) \]

ans =

0.8415

If you end a statement with a semicolon, MATLAB performs the computation, but suppresses the display of output in the Command Window.

\[e = a*b; \]

You can recall previous commands by pressing the up- and down-arrow keys, ↑ and ↓. Press the arrow keys either at an empty command line or after you type the first few characters of a command. For example, to recall the command \(b = 2 \), type \(b \), and then press the up-arrow key.
Matrices and Arrays

MATLAB is an abbreviation for "matrix laboratory." While other programming languages mostly work with numbers one at a time, MATLAB® is designed to operate primarily on whole matrices and arrays.

All MATLAB variables are multidimensional arrays, no matter what type of data. A matrix is a two-dimensional array often used for linear algebra.

Array Creation

To create an array with four elements in a single row, separate the elements with either a comma (,) or a space.

\[
a = [1 \ 2 \ 3 \ 4]
\]

\[
a = 1\times4
\]

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array}
\]

This type of array is a row vector.

To create a matrix that has multiple rows, separate the rows with semicolons.

\[
a = [1 \ 2 \ 3; \ 4 \ 5 \ 6; \ 7 \ 8 \ 10]
\]

\[
a = 3\times3
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 10
\end{array}
\]

Another way to create a matrix is to use a function, such as ones, zeros, or rand. For example, create a 5-by-1 column vector of zeros.

\[
z = \text{zeros}(5,1)
\]

\[
z = 5\times1
\]

\[
\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0
\end{array}
\]

Matrix and Array Operations

MATLAB allows you to process all of the values in a matrix using a single arithmetic operator or function.

\[
a + 10
\]

\[
\text{ans} = 3\times3
\]

\[
\begin{array}{ccc}
11 & 12 & 13
\end{array}
\]
\[\sin(a) \]
\[\text{ans} = 3\times3 \]
\[
\begin{bmatrix}
0.8415 & 0.9093 & 0.1411 \\
-0.7568 & -0.9589 & -0.2794 \\
0.6570 & 0.9894 & -0.5440
\end{bmatrix}
\]

To transpose a matrix, use a single quote ('):
\[a' \]
\[\text{ans} = 3\times3 \]
\[
\begin{bmatrix}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 10
\end{bmatrix}
\]

You can perform standard matrix multiplication, which computes the inner products between rows and columns, using the * operator. For example, confirm that a matrix times its inverse returns the identity matrix:
\[p = a \times \text{inv}(a) \]
\[p = 3\times3 \]
\[
\begin{bmatrix}
1.0000 & 0 & 0 \\
0.0000 & 1.0000 & 0 \\
0.0000 & -0.0000 & 1.0000
\end{bmatrix}
\]

Notice that \(p \) is not a matrix of integer values. MATLAB stores numbers as floating-point values, and arithmetic operations are sensitive to small differences between the actual value and its floating-point representation. You can display more decimal digits using the \texttt{format} command:
\[\text{format long} \]
\[p = a \times \text{inv}(a) \]
\[p = 3\times3 \]
\[
\begin{bmatrix}
1.000000000000000 & 0 & 0 \\
0.000000000000002 & 1.000000000000000 & 0 \\
0.000000000000002 & -0.000000000000004 & 1.000000000000000
\end{bmatrix}
\]

Reset the display to the shorter format using
\[\text{format short} \]
\texttt{format} affects only the display of numbers, not the way MATLAB computes or saves them.

To perform element-wise multiplication rather than matrix multiplication, use the \(.\times \) operator:
\[p = a \times a \]

\[p = 3 \times 3 \]

\[
\begin{array}{ccc}
1 & 4 & 9 \\
16 & 25 & 36 \\
49 & 64 & 100 \\
\end{array}
\]

The matrix operators for multiplication, division, and power each have a corresponding array operator that operates element-wise. For example, raise each element of \(a \) to the third power:

\[a^3 \]

\[\text{ans} = 3 \times 3 \]

\[
\begin{array}{ccc}
1 & 8 & 27 \\
64 & 125 & 216 \\
343 & 512 & 1000 \\
\end{array}
\]

Concatenation

Concatenation is the process of joining arrays to make larger ones. In fact, you made your first array by concatenating its individual elements. The pair of square brackets \([\]\) is the concatenation operator.

\[A = [a, a] \]

\[A = 3 \times 6 \]

\[
\begin{array}{cccccc}
1 & 2 & 3 & 1 & 2 & 3 \\
4 & 5 & 6 & 4 & 5 & 6 \\
7 & 8 & 10 & 7 & 8 & 10 \\
\end{array}
\]

Concatenating arrays next to one another using commas is called *horizontal* concatenation. Each array must have the same number of rows. Similarly, when the arrays have the same number of columns, you can concatenate *vertically* using semicolons.

\[A = [a; a] \]

\[A = 6 \times 3 \]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 10 \\
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 10 \\
\end{array}
\]

Complex Numbers

Complex numbers have both real and imaginary parts, where the imaginary unit is the square root of \(-1\).

\[\text{sqrt}(-1) \]
ans = 0.0000 + 1.000i

To represent the imaginary part of complex numbers, use either i or j.

c = [3+4i, 4+3j; -i, 10j]
c = 2×2 complex

\[
\begin{array}{cc}
3.0000 + 4.0000i & 4.0000 + 3.0000i \\
0.0000 - 1.0000i & 0.0000 + 10.0000i \\
\end{array}
\]
Array Indexing

Every variable in MATLAB® is an array that can hold many numbers. When you want to access selected elements of an array, use indexing.

For example, consider the 4-by-4 magic square A:

```matlab
A = magic(4)
```

```
A = 4×4
     16     2     3    13
     5    11    10     8
     9     7     6    12
     4    14    15     1
```

There are two ways to refer to a particular element in an array. The most common way is to specify row and column subscripts, such as

```matlab
A(4,2)
```

```matlab
ans = 14
```

Less common, but sometimes useful, is to use a single subscript that traverses down each column in order:

```matlab
A(8)
```

```matlab
ans = 14
```

Using a single subscript to refer to a particular element in an array is called linear indexing.

If you try to refer to elements outside an array on the right side of an assignment statement, MATLAB throws an error.

```matlab
test = A(4,5)
```

`Index exceeds matrix dimensions.`

However, on the left side of an assignment statement, you can specify elements outside the current dimensions. The size of the array increases to accommodate the newcomers.

```matlab
A(4,5) = 17
```

```
A = 4×5
     16     2     3    13     0
     5    11    10     8     0
     9     7     6    12     0
     4    14    15     1    17
```

To refer to multiple elements of an array, use the colon operator, which allows you to specify a range of the form `start:end`. For example, list the elements in the first three rows and the second column of A:

```matlab
A(1:3,2)
```

```matlab
Array Indexing
```
The colon alone, without start or end values, specifies all of the elements in that dimension. For example, select all the columns in the third row of A:

\[A(3,:) \]

\[
\begin{bmatrix}
2 \\
11 \\
7 \\
\end{bmatrix}
\]

The colon operator also allows you to create an equally spaced vector of values using the more general form `start:step:end`.

\[B = 0:10:100 \]

\[
\begin{bmatrix}
0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\
\end{bmatrix}
\]

If you omit the middle step, as in `start:end`, MATLAB uses the default step value of 1.
Workspace Variables

The workspace contains variables that you create within or import into MATLAB from data files or other programs. For example, these statements create variables A and B in the workspace.

```matlab
A = magic(4);
B = rand(3,5,2);
```

You can view the contents of the workspace using `whos`.

```
whos
Name        Size             Bytes   Class    Attributes
A           4x4                128    double
B           3x5x2              240    double
```

The variables also appear in the Workspace pane on the desktop.

Workspace variables do not persist after you exit MATLAB. Save your data for later use with the `save` command,

```
save myfile.mat
```

Saving preserves the workspace in your current working folder in a compressed file with a `.mat` extension, called a MAT-file.

To clear all the variables from the workspace, use the `clear` command.

Restore data from a MAT-file into the workspace using `load`.

```
load myfile.mat
```
Text and Characters

Text in String Arrays

When you are working with text, enclose sequences of characters in double quotes. You can assign text to a variable.

\[
t = "Hello, world";
\]

If the text includes double quotes, use two double quotes within the definition.

\[
q = "Something "quouted" and something else."
\]

\[
q = "Something "quouted" and something else."
\]

t and q are arrays, like all MATLAB variables. Their class or data type is string.

\[
\text{whos t}
\]

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Bytes</th>
<th>Class</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>1x1</td>
<td>174</td>
<td>string</td>
<td></td>
</tr>
</tbody>
</table>

Note Creating string arrays with double quotes was introduced in R2017a. If you are using an earlier release, create character arrays. For details, see “Data in Character Arrays” on page 1-13.

To add text to the end of a string, use the plus operator, +.

\[
f = 71;
c = (f-32)/1.8;
tempText = "Temperature is " + c + "C"
\]

\[
tempText = "Temperature is 21.6667C"
\]

Similar to numeric arrays, string arrays can have multiple elements. Use the `strlength` function to find the length of each string within an array.

\[
A = ["a", "bb", "ccc"; "dddd", "eeeeee", "fffffff"]
\]

\[
A =
\begin{array}{ccc}
 "a" & "bb" & "ccc" \\
 "dddd" & "eeeeee" & "fffffff"
\end{array}
\]

\[
\text{strlength(A)}
\]

\[
\begin{array}{ccc}
 1 & 2 & 3 \\
 4 & 6 & 7
\end{array}
\]
Data in Character Arrays

Sometimes characters represent data that does not correspond to text, such as a DNA sequence. You can store this type of data in a character array, which has data type char. Character arrays use single quotes.

```matlab
data = 'GCTAGAATCC';
whos data
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Bytes</th>
<th>Class</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>1x10</td>
<td>20</td>
<td>char</td>
<td></td>
</tr>
</tbody>
</table>

Each element of the array contains a single character:

```matlab
data(4)
ans =
    'A'
```

Concatenate character arrays with square brackets, just as you concatenate numeric arrays.

```matlab
data2 = [data 'ATTAGAAACC']
data2 =
    'GCTAGAATCCATTAGAAACC'
```

Character arrays are common in programs that were written before the introduction of string arrays. All MATLAB functions that accept string data also accept char data, and vice versa.
Calling Functions

MATLAB® provides a large number of functions that perform computational tasks. Functions are equivalent to subroutines or methods in other programming languages.

To call a function, such as `max`, enclose its input arguments in parentheses:

```matlab
A = [1 3 5];
max(A)
ans = 5
```

If there are multiple input arguments, separate them with commas:

```matlab
B = [10 6 4];
max(A,B)
ans = 1x3
    10     6     5
```

Return output from a function by assigning it to a variable:

```matlab
maxA = max(A)
maxA = 5
```

When there are multiple output arguments, enclose them in square brackets:

```matlab
[maxA,location] = max(A)
maxA = 5
location = 3
```

Enclose any character inputs in single quotes:

```matlab
disp('hello world')
hello world
```

To call a function that does not require any inputs and does not return any outputs, type only the function name:

```matlab
clc
```

The `clc` function clears the Command Window.
2-D and 3-D Plots

Line Plots

To create two-dimensional line plots, use the plot function. For example, plot the value of the sine function from 0 to 2π:

```matlab
x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)
```

You can label the axes and add a title.

```matlab
xlabel('x')
ylabel('sin(x)')
title('Plot of the Sine Function')
```
By adding a third input argument to the `plot` function, you can plot the same variables using a red dashed line.

```matlab
plot(x, y, 'r--')
```
'r--' is a line specification. Each specification can include characters for the line color, style, and marker. A marker is a symbol that appears at each plotted data point, such as a +, o, or *. For example, 'g::*' requests a dotted green line with * markers.

Notice that the titles and labels that you defined for the first plot are no longer in the current figure window. By default, MATLAB clears the figure each time you call a plotting function, resetting the axes and other elements to prepare the new plot.

To add plots to an existing figure, use `hold on`. Until you use `hold off` or close the window, all plots appear in the current figure window.

```matlab
x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)
hold on
y2 = cos(x);
plot(x,y2,':')
legend('sin','cos')
hold off
```
Three-dimensional plots typically display a surface defined by a function in two variables, \(z = f(x, y) \).

To evaluate \(z \), first create a set of \((x, y)\) points over the domain of the function using `meshgrid`.

\[
[X,Y] = \text{meshgrid}(-2:.2:2);
Z = X .* \exp(-X.^2 - Y.^2);
\]

Then, create a surface plot.

`surf(X,Y,Z)`
Both the `surf` function and its companion `mesh` display surfaces in three dimensions. `surf` displays both the connecting lines and the faces of the surface in color. `mesh` produces wireframe surfaces that color only the lines connecting the defining points.

Subplots

You can display multiple plots in different subregions of the same window using the `subplot` function.

The first two inputs to `subplot` indicate the number of plots in each row and column. The third input specifies which plot is active. For example, create four plots in a 2-by-2 grid within a figure window.

```matlab
t = 0:pi/10:2*pi;
[X,Y,Z] = cylinder(4*cos(t));
subplot(2,2,1); mesh(X); title('X');
subplot(2,2,2); mesh(Y); title('Y');
subplot(2,2,3); mesh(Z); title('Z');
subplot(2,2,4); mesh(X,Y,Z); title('X,Y,Z');
```
Programming and Scripts

The simplest type of MATLAB program is called a script. A script is a file that contains multiple sequential lines of MATLAB commands and function calls. You can run a script by typing its name at the command line.

Scripts

To create a script, use the `edit` command,

```matlab
edit mysphere
```

This command opens a blank file named `mysphere.m`. Enter some code that creates a unit sphere, doubles the radius, and plots the results:

```matlab
[x,y,z] = sphere;
r = 2;
surf(x*r,y*r,z*r)
axis equal
```

Next, add code that calculates the surface area and volume of a sphere:

```matlab
A = 4*pi*r^2;
V = (4/3)*pi*r^3;
```

Whenever you write code, it is a good practice to add comments that describe the code. Comments enable others to understand your code and can refresh your memory when you return to it later. Add comments using the percent (%) symbol.

```matlab
% Create and plot a sphere with radius r.
[x,y,z] = sphere;       % Create a unit sphere.
r = 2;
surf(x*r,y*r,z*r)       % Adjust each dimension and plot.
axis equal              % Use the same scale for each axis.

% Find the surface area and volume.
A = 4*pi*r^2;
V = (4/3)*pi*r^3;
```

Save the file in the current folder. To run the script, type its name at the command line:

```matlab
mysphere
```

You can also run scripts from the Editor using the **Run** button, ▶️.
Live Scripts

Instead of writing code and comments in plain text, you can use formatting options in *live scripts* to enhance your code. Live scripts allow you to view and interact with both code and output and can include formatted text, equations, and images.

For example, convert `mysphere` to a live script by selecting Save As and changing the file type to a MATLAB live code file (*.*.mlx). Then, replace the code comments with formatted text. For instance:

- Convert the comment lines to text. Select each line that begins with a percent symbol, and then select Text. Remove the percent symbols.
- Rewrite the text to replace the comments at the end of code lines. To apply a monospace font to function names in the text, select M. To add an equation, select Equation on the Insert tab.

To create a new live script using the `edit` command, include the `.mlx` extension with the file name:

```
edit newfile.ml
```

Loops and Conditional Statements

Within any script, you can define sections of code that either repeat in a loop or conditionally execute. Loops use a for or while keyword, and conditional statements use if or switch.

Loops are useful for creating sequences. For example, create a script named `fibseq` that uses a for loop to calculate the first 100 numbers of the Fibonacci sequence. In this sequence, the first two numbers are 1, and each subsequent number is the sum of the previous two, \(F_n = F_{n-1} + F_{n-2} \).
N = 100;
f(1) = 1;
f(2) = 1;

for n = 3:N
 f(n) = f(n-1) + f(n-2);
end
f(1:10)

When you run the script, the `for` statement defines a counter named `n` that starts at 3. Then, the loop repeatedly assigns to `f(n)`, incrementing `n` on each execution until it reaches 100. The last command in the script, `f(1:10)`, displays the first 10 elements of `f`.

ans =
 1 1 2 3 5 8 13 21 34 55

Conditional statements execute only when given expressions are true. For example, assign a value to a variable depending on the size of a random number: 'low', 'medium', or 'high'. In this case, the random number is an integer between 1 and 100.

num = randi(100)
if num < 34
 sz = 'low'
elseif num < 67
 sz = 'medium'
else
 sz = 'high'
end

The statement `sz = 'high'` only executes when `num` is greater than or equal to 67.

Script Locations

MATLAB looks for scripts and other files in certain places. To run a script, the file must be in the current folder or in a folder on the search path.

By default, the MATLAB folder that the MATLAB Installer creates is on the search path. If you want to store and run programs in another folder, add it to the search path. Select the folder in the Current Folder browser, right-click, and then select **Add to Path**.
Help and Documentation

All MATLAB functions have supporting documentation that includes examples and describes the function inputs, outputs, and calling syntax. There are several ways to access this information from the command line:

- Open the function documentation in a separate window using the `doc` command.

  ```matlab
doc mean
  ```

- Display function hints (the syntax portion of the function documentation) in the Command Window by pausing after you type the open parentheses for the function input arguments.

  ```matlab
  mean(
  ```

- View an abbreviated text version of the function documentation in the Command Window using the `help` command.

  ```matlab
  help mean
  ```

Access the complete product documentation by clicking the help icon 🎨.
Language Fundamentals

- “Matrices and Magic Squares” on page 2-2
- “Expressions” on page 2-7
- “Entering Commands” on page 2-12
- “Indexing” on page 2-14
- “Types of Arrays” on page 2-19
Matrices and Magic Squares

In this section...

“About Matrices” on page 2-2
“Entering Matrices” on page 2-3
“sum, transpose, and diag” on page 2-4
“The magic Function” on page 2-5
“Generating Matrices” on page 2-6

About Matrices

In the MATLAB environment, a matrix is a rectangular array of numbers. Special meaning is sometimes attached to 1-by-1 matrices, which are scalars, and to matrices with only one row or column, which are vectors. MATLAB has other ways of storing both numeric and nonnumeric data, but in the beginning, it is usually best to think of everything as a matrix. The operations in MATLAB are designed to be as natural as possible. Where other programming languages work with numbers one at a time, MATLAB allows you to work with entire matrices quickly and easily. A good example matrix, used throughout this book, appears in the Renaissance engraving Melencolia I by the German artist and amateur mathematician Albrecht Dürer.

This image is filled with mathematical symbolism, and if you look carefully, you will see a matrix in the upper-right corner. This matrix is known as a magic square and was believed by many in Dürer's
time to have genuinely magical properties. It does turn out to have some fascinating characteristics worth exploring.

Entering Matrices

The best way for you to get started with MATLAB is to learn how to handle matrices. Start MATLAB and follow along with each example.

You can enter matrices into MATLAB in several different ways:

- Enter an explicit list of elements.
- Load matrices from external data files.
- Generate matrices using built-in functions.
- Create matrices with your own functions and save them in files.

Start by entering Dürer’s matrix as a list of its elements. You only have to follow a few basic conventions:

- Separate the elements of a row with blanks or commas.
- Use a semicolon, ;, to indicate the end of each row.
- Surround the entire list of elements with square brackets, [].

To enter Dürer's matrix, simply type in the Command Window

\[
A = \begin{bmatrix}
16 & 3 & 2 & 13 \\
5 & 10 & 11 & 8 \\
9 & 6 & 7 & 12 \\
4 & 15 & 14 & 1
\end{bmatrix}
\]

MATLAB displays the matrix you just entered:

\[
A =
\begin{bmatrix}
16 & 3 & 2 & 13 \\
5 & 10 & 11 & 8 \\
9 & 6 & 7 & 12 \\
4 & 15 & 14 & 1
\end{bmatrix}
\]

This matrix matches the numbers in the engraving. Once you have entered the matrix, it is automatically remembered in the MATLAB workspace. You can refer to it simply as A. Now that you have A in the workspace, take a look at what makes it so interesting. Why is it magic?
sum, transpose, and diag

You are probably already aware that the special properties of a magic square have to do with the various ways of summing its elements. If you take the sum along any row or column, or along either of the two main diagonals, you will always get the same number. Let us verify that using MATLAB. The first statement to try is

\[
\text{sum}(A)
\]

MATLAB replies with

\[
\text{ans} =
\begin{bmatrix}
34 & 34 & 34 & 34 \\
\end{bmatrix}
\]

When you do not specify an output variable, MATLAB uses the variable \textit{ans}, short for \textit{answer}, to store the results of a calculation. You have computed a row vector containing the sums of the columns of \(A\). Each of the columns has the same sum, the \textit{magic} sum, 34.

How about the row sums? MATLAB has a preference for working with the columns of a matrix, so one way to get the row sums is to transpose the matrix, compute the column sums of the transpose, and then transpose the result.

MATLAB has two transpose operators. The apostrophe operator (for example, \(A'\)) performs a complex conjugate transposition. It flips a matrix about its main diagonal, and also changes the sign of the imaginary component of any complex elements of the matrix. The dot-apostrophe operator (\(A.'\)), transposes without affecting the sign of complex elements. For matrices containing all real elements, the two operators return the same result.

So

\[
A'
\]

produces

\[
\text{ans} =
\begin{bmatrix}
16 & 5 & 9 & 4 \\
3 & 10 & 6 & 15 \\
2 & 11 & 7 & 14 \\
13 & 8 & 12 & 1 \\
\end{bmatrix}
\]

and

\[
\text{sum}(A')'
\]

produces a column vector containing the row sums

\[
\text{ans} =
\begin{bmatrix}
34 \\
34 \\
34 \\
34 \\
\end{bmatrix}
\]

For an additional way to sum the rows that avoids the double transpose use the dimension argument for the \textit{sum} function:

\[
\text{sum}(A, 2)
\]

produces
ans =
 34
 34
 34
 34

The sum of the elements on the main diagonal is obtained with the `sum` and the `diag` functions:

```matlab
diag(A)
```
produces

ans =
 16
 10
 7
 1

and

```matlab
sum(diag(A))
```
produces

ans =
 34

The other diagonal, the so-called antidiagonal, is not so important mathematically, so MATLAB does not have a ready-made function for it. But a function originally intended for use in graphics, `fliplr`, flips a matrix from left to right:

```matlab
sum(diag(fliplr(A)))
```
ans =
 34

You have verified that the matrix in Dürer's engraving is indeed a magic square and, in the process, have sampled a few MATLAB matrix operations. The following sections continue to use this matrix to illustrate additional MATLAB capabilities.

The magic Function

MATLAB actually has a built-in function that creates magic squares of almost any size. Not surprisingly, this function is named `magic`:

```matlab
B = magic(4)
B =
  16     2     3    13
   5    11    10     8
   9     7     6    12
  14    15     1     4
```

This matrix is almost the same as the one in the Dürer engraving and has all the same “magic” properties; the only difference is that the two middle columns are exchanged.

You can swap the two middle columns of `B` to look like Dürer's A. For each row of `B`, rearrange the columns in the order specified by 1, 3, 2, 4:

```matlab
A = B(:, [1 3 2 4])
```
A =

\[
\begin{bmatrix}
16 & 3 & 2 & 13 \\
5 & 10 & 11 & 8 \\
9 & 6 & 7 & 12 \\
4 & 15 & 14 & 1
\end{bmatrix}
\]

Generating Matrices

MATLAB software provides four functions that generate basic matrices.

- **zeros**: All zeros
- **ones**: All ones
- **rand**: Uniformly distributed random elements
- **randn**: Normally distributed random elements

Here are some examples:

\[
Z = \text{zeros}(2,4)
\]

\[
Z =
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
F = 5*\text{ones}(3,3)
\]

\[
F =
\begin{bmatrix}
5 & 5 & 5 \\
5 & 5 & 5 \\
5 & 5 & 5
\end{bmatrix}
\]

\[
N = \text{fix}(10*\text{rand}(1,10))
\]

\[
N =
\begin{bmatrix}
9 & 2 & 6 & 4 & 8 & 7 & 4 & 0 & 8 & 4
\end{bmatrix}
\]

\[
R = \text{randn}(4,4)
\]

\[
R =
\begin{bmatrix}
0.6353 & 0.0860 & -0.3210 & -1.2316 \\
-0.6014 & -2.0046 & 1.2366 & 1.0556 \\
0.5512 & -0.4931 & -0.6313 & -0.1132 \\
-1.0998 & 0.4620 & -2.3252 & 0.3792
\end{bmatrix}
\]
Expressions

In this section...

“Variables” on page 2-7
“Numbers” on page 2-7
“Matrix Operators” on page 2-8
“Array Operators” on page 2-9
“Functions” on page 2-10
“Examples of Expressions” on page 2-11

Variables

Like most other programming languages, the MATLAB language provides mathematical expressions, but unlike most programming languages, these expressions involve entire matrices.

MATLAB does not require any type declarations or dimension statements. When MATLAB encounters a new variable name, it automatically creates the variable and allocates the appropriate amount of storage. If the variable already exists, MATLAB changes its contents and, if necessary, allocates new storage. For example,

\[
\text{num_students} = 25
\]

creates a 1-by-1 matrix named \text{num_students} and stores the value 25 in its single element. To view the matrix assigned to any variable, simply enter the variable name.

Variable names consist of a letter, followed by any number of letters, digits, or underscores. MATLAB is case sensitive; it distinguishes between uppercase and lowercase letters. \text{A} and \text{a} are not the same variable.

Although variable names can be of any length, MATLAB uses only the first \(N \) characters of the name, \(\text{where} \ N \ \text{is the number returned by the function} \ \text{namelengthmax} \), and ignores the rest. Hence, it is important to make each variable name unique in the first \(N \) characters to enable MATLAB to distinguish variables.

\[
N = \text{namelengthmax}
\]

\[
N = 63
\]

Numbers

MATLAB uses conventional decimal notation, with an optional decimal point and leading plus or minus sign, for numbers. Scientific notation uses the letter \(\text{e} \) to specify a power-of-ten scale factor. Imaginary numbers use either \(i \) or \(j \) as a suffix. Some examples of legal numbers are

\[
\begin{align*}
3 & \quad -99 & \quad 0.0001 \\
9.6397238 & \quad 1.60210\text{e}-20 & \quad 6.02252\text{e}23 \\
1i & \quad -3.14159j & \quad 3\text{e}5i \\
\end{align*}
\]

MATLAB stores all numbers internally using the \textit{long} format specified by the IEEE® floating-point standard. Floating-point numbers have a finite precision of roughly 16 significant decimal digits and a finite range of roughly \(10^{-308} \) to \(10^{+308} \).
Numbers represented in the double format have a maximum precision of 52 bits. Any double requiring more bits than 52 loses some precision. For example, the following code shows two unequal values to be equal because they are both truncated:

```matlab
x = 36028797018963968;
y = 36028797018963972;
x == y
ans =
   1
```
Integers have available precisions of 8-bit, 16-bit, 32-bit, and 64-bit. Storing the same numbers as 64-bit integers preserves precision:

```matlab
x = uint64(36028797018963968);
y = uint64(36028797018963972);
x == y
ans =
   0
```
MATLAB software stores the real and imaginary parts of a complex number. It handles the magnitude of the parts in different ways depending on the context. For instance, the `sort` function sorts based on magnitude and resolves ties by phase angle.

```matlab
sort([3+4i, 4+3i])
ans =
   4.0000 + 3.0000i   3.0000 + 4.0000i
```
This is because of the phase angle:

```matlab
angle(3+4i)
ans =
   0.9273
angle(4+3i)
ans =
   0.6435
```
The “equal to” relational operator `==` requires both the real and imaginary parts to be equal. The other binary relational operators `>` `<` `>=` and `<=` ignore the imaginary part of the number and consider the real part only.

Matrix Operators

Expressions use familiar arithmetic operators and precedence rules.

```plaintext
+               Addition
-               Subtraction
*               Multiplication
/               Division
\              Left division
^               Power
'              Complex conjugate transpose
( )             Specify evaluation order
```
Array Operators

When they are taken away from the world of linear algebra, matrices become two-dimensional numeric arrays. Arithmetic operations on arrays are done element by element. This means that addition and subtraction are the same for arrays and matrices, but that multiplicative operations are different. MATLAB uses a dot, or decimal point, as part of the notation for multiplicative array operations.

The list of operators includes

+ Addition
- Subtraction
.* Element-by-element multiplication
./ Element-by-element division
.
 Element-by-element left division
.^ Element-by-element power
.' Unconjugated array transpose

If the Dürer magic square is multiplied by itself with array multiplication

\[A.*A \]

the result is an array containing the squares of the integers from 1 to 16, in an unusual order:

\[\begin{array}{cccc}
256 & 9 & 4 & 169 \\
25 & 100 & 121 & 64 \\
81 & 36 & 49 & 144 \\
16 & 225 & 196 & 1 \\
\end{array} \]

Building Tables

Array operations are useful for building tables. Suppose \(n \) is the column vector

\[n = (0:9)'; \]

Then

\[\text{pows} = [n \; n.^2 \; 2.^n] \]

builds a table of squares and powers of 2:

\[\begin{array}{cccc}
0 & 0 & 1 \\
1 & 1 & 2 \\
2 & 4 & 4 \\
3 & 9 & 8 \\
4 & 16 & 16 \\
5 & 25 & 32 \\
6 & 36 & 64 \\
7 & 49 & 128 \\
8 & 64 & 256 \\
9 & 81 & 512 \\
\end{array} \]

The elementary math functions operate on arrays element by element. So
format short g
x = (1:0.1:2)';
logs = [x log10(x)]

builds a table of logarithms.

logs =
 1.0 0
1.1 0.04139
1.2 0.07918
1.3 0.11394
1.4 0.14613
1.5 0.17609
1.6 0.20412
1.7 0.23045
1.8 0.25527
1.9 0.27875
2.0 0.30103

Functions

MATLAB provides a large number of standard elementary mathematical functions, including `abs`, `sqrt`, `exp`, and `sin`. Taking the square root or logarithm of a negative number is not an error; the appropriate complex result is produced automatically. MATLAB also provides many more advanced mathematical functions, including Bessel and gamma functions. Most of these functions accept complex arguments. For a list of the elementary mathematical functions, type

```
help elfun
```

For a list of more advanced mathematical and matrix functions, type

```
help specfun
help elmat
```

Some of the functions, like `sqrt` and `sin`, are *built in*. Built-in functions are part of the MATLAB core so they are very efficient, but the computational details are not readily accessible. Other functions are implemented in the MATLAB programming language, so their computational details are accessible.

There are some differences between built-in functions and other functions. For example, for built-in functions, you cannot see the code. For other functions, you can see the code and even modify it if you want.

Several special functions provide values of useful constants.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pi</td>
<td>3.14159265...</td>
</tr>
<tr>
<td>i</td>
<td>Imaginary unit, $\sqrt{-1}$</td>
</tr>
<tr>
<td>j</td>
<td>Same as i</td>
</tr>
<tr>
<td>eps</td>
<td>Floating-point relative precision, $\varepsilon = 2^{-52}$</td>
</tr>
<tr>
<td>realmin</td>
<td>Smallest floating-point number, 2^{-1022}</td>
</tr>
<tr>
<td>realmax</td>
<td>Largest floating-point number, $(2 - \varepsilon)2^{1023}$</td>
</tr>
<tr>
<td>Inf</td>
<td>Infinity</td>
</tr>
</tbody>
</table>
NaN Not-a-number

Infinity is generated by dividing a nonzero value by zero, or by evaluating well defined mathematical expressions that overflow, that is, exceed realmax. Not-a-number is generated by trying to evaluate expressions like 0/0 or Inf-Inf that do not have well defined mathematical values.

The function names are not reserved. It is possible to overwrite any of them with a new variable, such as

eps = 1.e-6

and then use that value in subsequent calculations. The original function can be restored with

clear eps

Examples of Expressions

You have already seen several examples of MATLAB expressions. Here are a few more examples, and the resulting values:

rho = (1+sqrt(5))/2
rho =
 1.6180

a = abs(3+4i)
a =
 5

z = sqrt(besselk(4/3,rho-i))
z =
 0.3730+ 0.3214i

huge = exp(log(realmax))
huge =
 1.7977e+308

toobig = pi*huge
toobig =
 1 Inf
Entering Commands

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“The format Function” on page 2-12</td>
</tr>
<tr>
<td>“Suppressing Output” on page 2-13</td>
</tr>
<tr>
<td>“Entering Long Statements” on page 2-13</td>
</tr>
<tr>
<td>“Command Line Editing” on page 2-13</td>
</tr>
</tbody>
</table>

The format Function

The `format` function controls the numeric format of the values displayed. The function affects only how numbers are displayed, not how MATLAB software computes or saves them. Here are the different formats, together with the resulting output produced from a vector `x` with components of different magnitudes.

Note To ensure proper spacing, use a fixed-width font, such as Courier.

```
x = [4/3 1.2345e-6]
format short
    1.3333    0.0000
format short e
    1.3333e+000    1.2345e-006
format short g
    1.3333    1.2345e-006
format long
    1.33333333333333    0.00000123450000
format long e
    1.333333333333333e+000    1.234500000000000e-006
format long g
    1.33333333333333    1.2345e-006
format bank
    1.33          0.00
format rat
    4/3          1/810045
format hex
```
If the largest element of a matrix is larger than 10^3 or smaller than 10^{-3}, MATLAB applies a common scale factor for the short and long formats.

In addition to the `format` functions shown above

```
format compact
```

suppresses many of the blank lines that appear in the output. This lets you view more information on a screen or window. If you want more control over the output format, use the `sprintf` and `fprintf` functions.

Suppressing Output

If you simply type a statement and press `Return` or `Enter`, MATLAB automatically displays the results on screen. However, if you end the line with a semicolon, MATLAB performs the computation, but does not display any output. This is particularly useful when you generate large matrices. For example,

```
A = magic(100);
```

Entering Long Statements

If a statement does not fit on one line, use an ellipsis (three periods), ..., followed by `Return` or `Enter` to indicate that the statement continues on the next line. For example,

```
s = 1 -1/2 + 1/3 -1/4 + 1/5 - 1/6 + 1/7 ...
   - 1/8 + 1/9 - 1/10 + 1/11 - 1/12;
```

Blank spaces around the `=`, `+`, and `-` signs are optional, but they improve readability.

Command Line Editing

Various arrow and control keys on your keyboard allow you to recall, edit, and reuse statements you have typed earlier. For example, suppose you mistakenly enter

```
rho = (1 + sqrt(5))/2
```

You have misspelled `sqrt`. MATLAB responds with

```
Undefined function 'sqt' for input arguments of type 'double'.
```

Instead of retyping the entire line, simply press the ↑ key. The statement you typed is redisplayed. Use the ← key to move the cursor over and insert the missing `r`. Repeated use of the ↑ key recalls earlier lines. Typing a few characters, and then pressing the ↑ key finds a previous line that begins with those characters. You can also copy previously executed statements from the Command History.
Indexing

In this section...

“Subscripts” on page 2-14
“The Colon Operator” on page 2-15
“Concatenation” on page 2-16
“Deleting Rows and Columns” on page 2-16
“Scalar Expansion” on page 2-17
“Logical Subscripting” on page 2-17
“The find Function” on page 2-18

Subscripts

The element in row i and column j of A is denoted by $A(i,j)$. For example, $A(4,2)$ is the number in the fourth row and second column. For the magic square, $A(4,2)$ is 15. So to compute the sum of the elements in the fourth column of A, type

$$A(1,4) + A(2,4) + A(3,4) + A(4,4)$$

This subscript produces

ans =

 34

but is not the most elegant way of summing a single column.

It is also possible to refer to the elements of a matrix with a single subscript, $A(k)$. A single subscript is the usual way of referencing row and column vectors. However, it can also apply to a fully two-dimensional matrix, in which case the array is regarded as one long column vector formed from the columns of the original matrix. So, for the magic square, $A(8)$ is another way of referring to the value 15 stored in $A(4,2)$.

If you try to use the value of an element outside of the matrix, it is an error:

$$t = A(4,5)$$

Index exceeds matrix dimensions.

Conversely, if you store a value in an element outside of the matrix, the size increases to accommodate the newcomer:

$$X = A;$$
$$X(4,5) = 17$$

$$X =$$

$$\begin{bmatrix}
16 & 3 & 2 & 13 & 0 \\
5 & 10 & 11 & 8 & 0 \\
9 & 6 & 7 & 12 & 0 \\
4 & 15 & 14 & 1 & 17
\end{bmatrix}$$
The Colon Operator

The colon, :, is one of the most important MATLAB operators. It occurs in several different forms. The expression

\[1:10 \]

is a row vector containing the integers from 1 to 10:

\[1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \]

To obtain nonunit spacing, specify an increment. For example,

\[100:-7:50 \]

is

\[100 \quad 93 \quad 86 \quad 79 \quad 72 \quad 65 \quad 58 \quad 51 \]

and

\[0:pi/4:pi \]

is

\[0 \quad 0.7854 \quad 1.5708 \quad 2.3562 \quad 3.1416 \]

Subscript expressions involving colons refer to portions of a matrix:

\[A(1:k,j) \]

is the first k elements of the jth column of A. Thus,

\[\text{sum}(A(1:4,4)) \]

computes the sum of the fourth column. However, there is a better way to perform this computation. The colon by itself refers to all the elements in a row or column of a matrix and the keyword end refers to the last row or column. Thus,

\[\text{sum}(A(:,\text{end})) \]

computes the sum of the elements in the last column of A:

\[\text{ans} = 34 \]

Why is the magic sum for a 4-by-4 square equal to 34? If the integers from 1 to 16 are sorted into four groups with equal sums, that sum must be

\[\text{sum}(1:16)/4 \]

which, of course, is

\[\text{ans} = 34 \]
Concatenation

Concatenation is the process of joining small matrices to make bigger ones. In fact, you made your first matrix by concatenating its individual elements. The pair of square brackets, [], is the concatenation operator. For an example, start with the 4-by-4 magic square, A, and form

\[B = [A \ A+32; A+48 \ A+16] \]

The result is an 8-by-8 matrix, obtained by joining the four submatrices:

\[
B = \\
\begin{array}{cccc}
16 & 3 & 2 & 13 & 48 & 35 & 34 & 45 \\
5 & 10 & 11 & 8 & 37 & 42 & 43 & 40 \\
9 & 6 & 7 & 12 & 41 & 38 & 39 & 44 \\
4 & 15 & 14 & 1 & 36 & 47 & 46 & 33 \\
64 & 51 & 50 & 61 & 32 & 19 & 18 & 29 \\
53 & 58 & 59 & 62 & 21 & 26 & 27 & 24 \\
57 & 54 & 55 & 60 & 25 & 22 & 23 & 28 \\
52 & 63 & 62 & 49 & 20 & 31 & 30 & 17 \\
\end{array}
\]

This matrix is halfway to being another magic square. Its elements are a rearrangement of the integers 1:64. Its column sums are the correct value for an 8-by-8 magic square:

\[
\text{sum}(B) \\
\text{ans} = \\
\begin{array}{cccccccc}
\end{array}
\]

But its row sums, \(\text{sum}(B')' \), are not all the same. Further manipulation is necessary to make this a valid 8-by-8 magic square.

Deleting Rows and Columns

You can delete rows and columns from a matrix using just a pair of square brackets. Start with

\[X = A; \]

Then, to delete the second column of \(X \), use

\[X(:,2) = [] \]

This changes \(X \) to

\[
X = \\
\begin{array}{ccc}
16 & 2 & 13 \\
5 & 11 & 8 \\
9 & 7 & 12 \\
4 & 14 & 1 \\
\end{array}
\]

If you delete a single element from a matrix, the result is not a matrix anymore. So, expressions like

\[X(1,2) = [] \]

result in an error. However, using a single subscript deletes a single element, or sequence of elements, and reshapes the remaining elements into a row vector. So

\[X(2:2:10) = [] \]
results in
\[X = \begin{bmatrix} 16 & 9 & 2 & 7 & 13 & 12 & 1 \end{bmatrix} \]

Scalar Expansion

Matrices and scalars can be combined in several different ways. For example, a scalar is subtracted from a matrix by subtracting it from each element. The average value of the elements in our magic square is 8.5, so
\[B = A - 8.5 \]

forms a matrix whose column sums are zero:
\[B = \begin{bmatrix} 7.5 & -5.5 & -6.5 & 4.5 \\ -3.5 & 1.5 & 2.5 & -0.5 \\ 0.5 & -2.5 & -1.5 & 3.5 \\ -4.5 & 6.5 & 5.5 & -7.5 \end{bmatrix} \]

\[
\text{sum}(B) = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}
\]

With scalar expansion, MATLAB assigns a specified scalar to all indices in a range. For example,
\[B(1:2,2:3) = 0 \]

zeros out a portion of B:
\[B = \begin{bmatrix} 7.5 & 0 & 0 & 4.5 \\ -3.5 & 0 & 0 & -0.5 \\ 0.5 & -2.5 & -1.5 & 3.5 \\ -4.5 & 6.5 & 5.5 & -7.5 \end{bmatrix} \]

Logical Subscripting

The logical vectors created from logical and relational operations can be used to reference subarrays. Suppose \(X \) is an ordinary matrix and \(L \) is a matrix of the same size that is the result of some logical operation. Then \(X(L) \) specifies the elements of \(X \) where the elements of \(L \) are nonzero.

This kind of subscripting can be done in one step by specifying the logical operation as the subscripting expression. Suppose you have the following set of data:
\[x = [2.1 \ 1.7 \ 1.6 \ 1.5 \ NaN \ 1.9 \ 1.8 \ 1.5 \ 5.1 \ 1.8 \ 1.4 \ 2.2 \ 1.6 \ 1.8]; \]
The NaN is a marker for a missing observation, such as a failure to respond to an item on a questionnaire. To remove the missing data with logical indexing, use \(\text{isfinite}(x) \), which is true for all finite numerical values and false for NaN and Inf:
\[x = x(\text{isfinite}(x)) \]
\[x = 2.1 \ 1.7 \ 1.6 \ 1.5 \ 1.9 \ 1.8 \ 1.5 \ 5.1 \ 1.8 \ 1.4 \ 2.2 \ 1.6 \ 1.8 \]
Now there is one observation, 5.1, which seems to be very different from the others. It is an outlier. The following statement removes outliers, in this case those elements more than three standard deviations from the mean:

\[
x = x \cdot (\text{abs}(x - \text{mean}(x)) \leq 3 \cdot \text{std}(x))
\]

\[
x = 2.1 \ 1.7 \ 1.6 \ 1.5 \ 1.9 \ 1.8 \ 1.5 \ 1.8 \ 1.4 \ 2.2 \ 1.6 \ 1.8
\]

For another example, highlight the location of the prime numbers in Dürer’s magic square by using logical indexing and scalar expansion to set the nonprimes to 0. (See “The magic Function” on page 2-5.)

\[
A(-\text{isprime}(A)) = 0
\]

\[
A =
\begin{bmatrix}
0 & 3 & 2 & 13 \\
5 & 0 & 11 & 0 \\
0 & 0 & 7 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

The find Function

The `find` function determines the indices of array elements that meet a given logical condition. In its simplest form, `find` returns a column vector of indices. Transpose that vector to obtain a row vector of indices. For example, start again with Dürer’s magic square. (See “The magic Function” on page 2-5.)

\[
k = \text{find}(\text{isprime}(A))'
\]

picks out the locations, using one-dimensional indexing, of the primes in the magic square:

\[
k =
2 \ 5 \ 9 \ 10 \ 11 \ 13
\]

Display those primes, as a row vector in the order determined by \(k \), with

\[
A(k)
\]

\[
\text{ans} =
5 \ 3 \ 2 \ 11 \ 7 \ 13
\]

When you use \(k \) as a left-side index in an assignment statement, the matrix structure is preserved:

\[
A(k) = \text{NaN}
\]

\[
A =
\begin{bmatrix}
16 & \text{NaN} & \text{NaN} & \text{NaN} \\
\text{NaN} & 10 & \text{NaN} & 8 \\
9 & 6 & \text{NaN} & 12 \\
4 & 15 & 14 & 1
\end{bmatrix}
\]
Types of Arrays

In this section...

“Multidimensional Arrays” on page 2-19
“Cell Arrays” on page 2-21
“Characters and Text” on page 2-22
“Structures” on page 2-24

Multidimensional Arrays

Multidimensional arrays in the MATLAB environment are arrays with more than two subscripts. One way of creating a multidimensional array is by calling `zeros`, `ones`, `rand`, or `randn` with more than two arguments. For example,

```matlab
R = randn(3,4,5);
```

creates a 3-by-4-by-5 array with a total of $3 \times 4 \times 5 = 60$ normally distributed random elements.

A three-dimensional array might represent three-dimensional physical data, say the temperature in a room, sampled on a rectangular grid. Or it might represent a sequence of matrices, $A^{(k)}$, or samples of a time-dependent matrix, $A(t)$. In these latter cases, the (i,j)th element of the kth matrix, or the t_kth matrix, is denoted by $A(i,j,k)$.

MATLAB and Dürer's versions of the magic square of order 4 differ by an interchange of two columns. Many different magic squares can be generated by interchanging columns. The statement

```matlab
p = perms(1:4);
A = magic(4);
M = zeros(4,4,24);
for k = 1:24
    M(:,:,k) = A(:,p(k,:));
end
```

stores the sequence of 24 magic squares in a three-dimensional array, M. The size of M is

```matlab
size(M)
```

ans =

```
4  4  24
```
The order of the matrices shown in this illustration might differ from your results. The `perms` function always returns all permutations of the input vector, but the order of the permutations might be different for different MATLAB versions.

The statement

\[
\text{sum}(M, d)
\]

computes sums by varying the \(d \)th subscript. So

\[
\text{sum}(M, 1)
\]

is a 1-by-4-by-24 array containing 24 copies of the row vector

\[
34 \quad 34 \quad 34 \quad 34
\]

and

\[
\text{sum}(M, 2)
\]

is a 4-by-1-by-24 array containing 24 copies of the column vector

\[
34 \\
34 \\
34 \\
34
\]

Finally,

\[
S = \text{sum}(M, 3)
\]

adds the 24 matrices in the sequence. The result has size 4-by-4-by-1, so it looks like a 4-by-4 array:

\[
S =
\begin{bmatrix}
204 & 204 & 204 & 204 \\
204 & 204 & 204 & 204 \\
204 & 204 & 204 & 204 \\
204 & 204 & 204 & 204 \\
\end{bmatrix}
\]
Cell Arrays

Cell arrays in MATLAB are multidimensional arrays whose elements are copies of other arrays. A cell array of empty matrices can be created with the `cell` function. But, more often, cell arrays are created by enclosing a miscellaneous collection of things in curly braces, `{}`. The curly braces are also used with subscripts to access the contents of various cells. For example,

\[
C = \{A \ \text{sum}(A) \ \text{prod}(...(A))\}
\]

produces a 1-by-3 cell array. The three cells contain the magic square, the row vector of column sums, and the product of all its elements. When \(C \) is displayed, you see

\[
C = \\
[4x4 \text{ double}] \ [1x4 \text{ double}] \ [20922789888000]
\]

This is because the first two cells are too large to print in this limited space, but the third cell contains only a single number, 16!, so there is room to print it.

Here are two important points to remember. First, to retrieve the contents of one of the cells, use subscripts in curly braces. For example, \(C\{1\} \) retrieves the magic square and \(C\{3\} \) is 16!. Second, cell arrays contain copies of other arrays, not pointers to those arrays. If you subsequently change \(A \), nothing happens to \(C \).

You can use three-dimensional arrays to store a sequence of matrices of the same size. Cell arrays can be used to store a sequence of matrices of different sizes. For example,

\[
M = \text{cell}(8,1);
\text{for } n = 1:8
M\{n\} = \text{magic}(n);
\text{end}
\]

produces a sequence of magic squares of different order:

\[
M = \\
[1] \ [2x2 \text{ double}] \ [3x3 \text{ double}] \ [4x4 \text{ double}] \ [5x5 \text{ double}] \ [6x6 \text{ double}] \ [7x7 \text{ double}] \ [8x8 \text{ double}]
\]
You can retrieve the 4-by-4 magic square matrix with

\[
M^{(4)}
\]

Characters and Text

Enter text into MATLAB using single quotes. For example,

\[
s = 'Hello'
\]

The result is not the same kind of numeric matrix or array you have been dealing with up to now. It is a 1-by-5 character array.

Internally, the characters are stored as numbers, but not in floating-point format. The statement

\[
a = \text{double}(s)
\]

converts the character array to a numeric matrix containing floating-point representations of the ASCII codes for each character. The result is

\[
a =
\begin{bmatrix}
72 & 101 & 108 & 108 & 111
\end{bmatrix}
\]

The statement

\[
s = \text{char}(a)
\]
reverses the conversion.

Converting numbers to characters makes it possible to investigate the various fonts available on your computer. The printable characters in the basic ASCII character set are represented by the integers \(32:127\). (The integers less than 32 represent nonprintable control characters.) These integers are arranged in an appropriate 6-by-16 array with

\[
F = \text{reshape}(32:127,16,6)';
\]

The printable characters in the extended ASCII character set are represented by \(F+128\). When these integers are interpreted as characters, the result depends on the font currently being used. Type the statements

```matlab
char(F)
char(F+128)
```

and then vary the font being used for the Command Window. To change the font, on the Home tab, in the Environment section, click Preferences > Fonts. If you include tabs in lines of code, use a fixed-width font, such as Monospaced, to align the tab positions on different lines.

Concatenation with square brackets joins text variables together. The statement

```matlab
h = [s, ' world']
```

joins the characters horizontally and produces

```matlab
h =
  Hello world
```

The statement

```matlab
v = [s; 'world']
```

joins the characters vertically and produces

```matlab
v =
  Hello
  world
```

Notice that a blank has to be inserted before the 'w' in \(h\) and that both words in \(v\) have to have the same length. The resulting arrays are both character arrays; \(h\) is 1-by-11 and \(v\) is 2-by-5.

To manipulate a body of text containing lines of different lengths, you have two choices—a padded character array or a cell array of character vectors. When creating a character array, you must make each row of the array the same length. (Pad the ends of the shorter rows with spaces.) The char function does this padding for you. For example,

```matlab
S = char('A','rolling','stone','gathers','momentum. ')
```

produces a 5-by-9 character array:

```matlab
S =
A
rolling
stone
gathers
momentum.
```
Alternatively, you can store the text in a cell array. For example,

```matlab
C = {'A';'rolling';'stone';'gathers';'momentum.'}
```

creates a 5-by-1 cell array that requires no padding because each row of the array can have a different length:

```matlab
C =
    'A'
   'rolling'
    'stone'
   'gathers'
    'momentum.'
```

You can convert a padded character array to a cell array of character vectors with

```matlab
C = cellstr(S)
```

and reverse the process with

```matlab
S = char(C)
```

Structures

Structures are multidimensional MATLAB arrays with elements accessed by textual field designators. For example,

```matlab
S.name = 'Ed Plum';
S.score = 83;
S.grade = 'B+'
```

creates a scalar structure with three fields:

```matlab
S =
    name: 'Ed Plum'
    score: 83
    grade: 'B+'
```

Like everything else in the MATLAB environment, structures are arrays, so you can insert additional elements. In this case, each element of the array is a structure with several fields. The fields can be added one at a time,

```matlab
S(2).name = 'Toni Miller';
S(2).score = 91;
S(2).grade = 'A-';
```

or an entire element can be added with a single statement:

```matlab
S(3) = struct('name','Jerry Garcia',
              'score',70,'grade','C')
```

Now the structure is large enough that only a summary is printed:

```matlab
S =
1x3 struct array with fields:
    name
    score
    grade
There are several ways to reassemble the various fields into other MATLAB arrays. They are mostly based on the notation of a comma-separated list. If you type

S.score

it is the same as typing

S(1).score, S(2).score, S(3).score

which is a comma-separated list.

If you enclose the expression that generates such a list within square brackets, MATLAB stores each item from the list in an array. In this example, MATLAB creates a numeric row vector containing the score field of each element of structure array S:

```
scores = [S.score]
scores =
 83 91 70
```

```
avg_score = sum(scores)/length(scores)
avg_score =
 81.3333
```

To create a character array from one of the text fields (name, for example), call the `char` function on the comma-separated list produced by S.name:

```
names = char(S.name)
names =
 Ed Plum
 Toni Miller
 Jerry Garcia
```

Similarly, you can create a cell array from the name fields by enclosing the list-generating expression within curly braces:

```
names = {S.name}
names =
 'Ed Plum' 'Toni Miller' 'Jerry Garcia'
```

To assign the fields of each element of a structure array to separate variables outside of the structure, specify each output to the left of the equals sign, enclosing them all within square brackets:

```
[N1 N2 N3] = S.name
N1 =
 Ed Plum
N2 =
 Toni Miller
N3 =
 Jerry Garcia
```

**Dynamic Field Names**

The most common way to access the data in a structure is by specifying the name of the field that you want to reference. Another means of accessing structure data is to use dynamic field names. These names express the field as a variable expression that MATLAB evaluates at run time. The dot-parentheses syntax shown here makes expression a dynamic field name:

```
structName.(expression)
```
Index into this field using the standard MATLAB indexing syntax. For example, to evaluate expression into a field name and obtain the values of that field at columns 1 through 25 of row 7, use

```
structName.(expression)(7,1:25)
```

**Dynamic Field Names Example**

The `avgscore` function shown below computes an average test score, retrieving information from the `testscores` structure using dynamic field names:

```matlab
function avg = avgscore(testscores, student, first, last)
 for k = first:last
 scores(k) = testscores.(student).week(k);
 end
 avg = sum(scores)/(last - first + 1);
end
```

You can run this function using different values for the dynamic field `student`. First, initialize the structure that contains scores for a 25-week period:

```matlab
testscores.Ann_Lane.week(1:25) = ...
 [95 89 76 82 79 92 94 92 89 81 75 93 ...
 85 84 83 86 85 90 82 82 84 79 96 88 98];

testscores.William_King.week(1:25) = ...
 [87 80 91 84 99 87 93 87 97 87 82 89 ...
 86 82 90 98 75 79 92 84 90 93 84 78 81];
```

Now run `avgscore`, supplying the students name fields for the `testscores` structure at run time using dynamic field names:

```matlab
avgscore(testscores, 'Ann_Lane', 7, 22)
ans =
 85.2500

avgscore(testscores, 'William_King', 7, 22)
ans =
 87.7500
```
Mathematics

- “Linear Algebra” on page 3-2
- “Operations on Nonlinear Functions” on page 3-35
- “Multivariate Data” on page 3-38
- “Data Analysis” on page 3-39
Linear Algebra

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Matrices in the MATLAB Environment” on page 3-2</td>
</tr>
<tr>
<td>“Systems of Linear Equations” on page 3-10</td>
</tr>
<tr>
<td>“Factorizations” on page 3-19</td>
</tr>
<tr>
<td>“Powers and Exponentials” on page 3-24</td>
</tr>
<tr>
<td>“Eigenvalues” on page 3-28</td>
</tr>
<tr>
<td>“Singular Values” on page 3-30</td>
</tr>
</tbody>
</table>

Matrices in the MATLAB Environment

This topic contains an introduction to creating matrices and performing basic matrix calculations in MATLAB.

The MATLAB environment uses the term matrix to indicate a variable containing real or complex numbers arranged in a two-dimensional grid. An array is, more generally, a vector, matrix, or higher dimensional grid of numbers. All arrays in MATLAB are rectangular, in the sense that the component vectors along any dimension are all the same length. The mathematical operations defined on matrices are the subject of linear algebra.

Creating Matrices

MATLAB has many functions that create different kinds of matrices. For example, you can create a symmetric matrix with entries based on Pascal’s triangle:

\[ A = \text{pascal}(3) \]

\[
A =
\begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 6
\end{bmatrix}
\]

Or, you can create an unsymmetric magic square matrix, which has equal row and column sums:

\[ B = \text{magic}(3) \]

\[
B =
\begin{bmatrix}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{bmatrix}
\]

Another example is a 3-by-2 rectangular matrix of random integers. In this case the first input to \text{randi} describes the range of possible values for the integers, and the second two inputs describe the number of rows and columns.

\[ C = \text{randi}(10,3,2) \]

\[
C =
\begin{bmatrix}
9 & 10
\end{bmatrix}
\]
A column vector is an \( m \)-by-1 matrix, a row vector is a 1-by-\( n \) matrix, and a scalar is a 1-by-1 matrix. To define a matrix manually, use square brackets \([\ ]\) to denote the beginning and end of the array. Within the brackets, use a semicolon ; to denote the end of a row. In the case of a scalar (1-by-1 matrix), the brackets are not required. For example, these statements produce a column vector, a row vector, and a scalar:

- \( u = [3; 1; 4] \)
- \( v = [2 \ 0 \ -1] \)
- \( s = 7 \)

For more information about creating and working with matrices, see “Creating, Concatenating, and Expanding Matrices”.

**Adding and Subtracting Matrices**

Addition and subtraction of matrices and arrays is performed element-by-element, or *element-wise*. For example, adding \( A \) to \( B \) and then subtracting \( A \) from the result recovers \( B \):

- \( X = A + B \)
- \( Y = X - A \)

Addition and subtraction require both matrices to have compatible dimensions. If the dimensions are incompatible, an error results:

- \( X = A + C \)

*Error using +*

*Matrix dimensions must agree.*

For more information, see “Array vs. Matrix Operations”.

```
10 7
 2 1
```

```matlab
A column vector is an m-by-1 matrix, a row vector is a 1-by-n matrix, and a scalar is a 1-by-1 matrix. To define a matrix manually, use square brackets [] to denote the beginning and end of the array. Within the brackets, use a semicolon ; to denote the end of a row. In the case of a scalar (1-by-1 matrix), the brackets are not required. For example, these statements produce a column vector, a row vector, and a scalar:

\[
\begin{align*}
 u &= [3; 1; 4] \\
 v &= [2 \ 0 \ -1] \\
 s &= 7
\end{align*}
\]

For more information about creating and working with matrices, see “Creating, Concatenating, and Expanding Matrices”.

Adding and Subtracting Matrices

Addition and subtraction of matrices and arrays is performed element-by-element, or *element-wise*. For example, adding \(A \) to \(B \) and then subtracting \(A \) from the result recovers \(B \):

\[
\begin{align*}
 X &= A + B \\
 Y &= X - A
\end{align*}
\]

Addition and subtraction require both matrices to have compatible dimensions. If the dimensions are incompatible, an error results:

\[
\begin{align*}
 X &= A + C
\end{align*}
\]

Error using +

Matrix dimensions must agree.

For more information, see “Array vs. Matrix Operations”.

```
10    7
 2    1
```

```matlab
A column vector is an m-by-1 matrix, a row vector is a 1-by-n matrix, and a scalar is a 1-by-1 matrix. To define a matrix manually, use square brackets [ ] to denote the beginning and end of the array. Within the brackets, use a semicolon ; to denote the end of a row. In the case of a scalar (1-by-1 matrix), the brackets are not required. For example, these statements produce a column vector, a row vector, and a scalar:

\[
\begin{align*}
  u &= [3; 1; 4] \\
  v &= [2 \ 0 \ -1] \\
  s &= 7
\end{align*}
\]

For more information about creating and working with matrices, see “Creating, Concatenating, and Expanding Matrices”.

**Adding and Subtracting Matrices**

Addition and subtraction of matrices and arrays is performed element-by-element, or *element-wise*. For example, adding \( A \) to \( B \) and then subtracting \( A \) from the result recovers \( B \):

\[
\begin{align*}
  X &= A + B \\
  Y &= X - A
\end{align*}
\]

Addition and subtraction require both matrices to have compatible dimensions. If the dimensions are incompatible, an error results:

\[
\begin{align*}
  X &= A + C
\end{align*}
\]

*Error using +*

*Matrix dimensions must agree.*

For more information, see “Array vs. Matrix Operations”.

```
10 7
 2 1
```

```matlab
A column vector is an m-by-1 matrix, a row vector is a 1-by-n matrix, and a scalar is a 1-by-1 matrix. To define a matrix manually, use square brackets [] to denote the beginning and end of the array. Within the brackets, use a semicolon ; to denote the end of a row. In the case of a scalar (1-by-1 matrix), the brackets are not required. For example, these statements produce a column vector, a row vector, and a scalar:

\[
\begin{align*}
 u &= [3; 1; 4] \\
 v &= [2 \ 0 \ -1] \\
 s &= 7
\end{align*}
\]

For more information about creating and working with matrices, see “Creating, Concatenating, and Expanding Matrices”.

Adding and Subtracting Matrices

Addition and subtraction of matrices and arrays is performed element-by-element, or *element-wise*. For example, adding \(A \) to \(B \) and then subtracting \(A \) from the result recovers \(B \):

\[
\begin{align*}
 X &= A + B \\
 Y &= X - A
\end{align*}
\]

Addition and subtraction require both matrices to have compatible dimensions. If the dimensions are incompatible, an error results:

\[
\begin{align*}
 X &= A + C
\end{align*}
\]

Error using +

Matrix dimensions must agree.

For more information, see “Array vs. Matrix Operations”.

```
10    7
 2    1
```

```matlab
A column vector is an m-by-1 matrix, a row vector is a 1-by-n matrix, and a scalar is a 1-by-1 matrix. To define a matrix manually, use square brackets [ ] to denote the beginning and end of the array. Within the brackets, use a semicolon ; to denote the end of a row. In the case of a scalar (1-by-1 matrix), the brackets are not required. For example, these statements produce a column vector, a row vector, and a scalar:

\[
\begin{align*}
  u &= [3; 1; 4] \\
  v &= [2 \ 0 \ -1] \\
  s &= 7
\end{align*}
\]

For more information about creating and working with matrices, see “Creating, Concatenating, and Expanding Matrices”.

**Adding and Subtracting Matrices**

Addition and subtraction of matrices and arrays is performed element-by-element, or *element-wise*. For example, adding \( A \) to \( B \) and then subtracting \( A \) from the result recovers \( B \):

\[
\begin{align*}
  X &= A + B \\
  Y &= X - A
\end{align*}
\]

Addition and subtraction require both matrices to have compatible dimensions. If the dimensions are incompatible, an error results:

\[
\begin{align*}
  X &= A + C
\end{align*}
\]

*Error using +*

*Matrix dimensions must agree.*

For more information, see “Array vs. Matrix Operations”.

```
10 7
 2 1
```

```matlab
A column vector is an m-by-1 matrix, a row vector is a 1-by-n matrix, and a scalar is a 1-by-1 matrix. To define a matrix manually, use square brackets [] to denote the beginning and end of the array. Within the brackets, use a semicolon ; to denote the end of a row. In the case of a scalar (1-by-1 matrix), the brackets are not required. For example, these statements produce a column vector, a row vector, and a scalar:

\[
\begin{align*}
 u &= [3; 1; 4] \\
 v &= [2 \ 0 \ -1] \\
 s &= 7
\end{align*}
\]

For more information about creating and working with matrices, see “Creating, Concatenating, and Expanding Matrices”.

Adding and Subtracting Matrices

Addition and subtraction of matrices and arrays is performed element-by-element, or *element-wise*. For example, adding \(A \) to \(B \) and then subtracting \(A \) from the result recovers \(B \):

\[
\begin{align*}
 X &= A + B \\
 Y &= X - A
\end{align*}
\]

Addition and subtraction require both matrices to have compatible dimensions. If the dimensions are incompatible, an error results:

\[
\begin{align*}
 X &= A + C
\end{align*}
\]

Error using +

Matrix dimensions must agree.

For more information, see “Array vs. Matrix Operations”.

```
10    7
 2    1
```

```matlab
A column vector is an m-by-1 matrix, a row vector is a 1-by-n matrix, and a scalar is a 1-by-1 matrix. To define a matrix manually, use square brackets [ ] to denote the beginning and end of the array. Within the brackets, use a semicolon ; to denote the end of a row. In the case of a scalar (1-by-1 matrix), the brackets are not required. For example, these statements produce a column vector, a row vector, and a scalar:

\[
\begin{align*}
  u &= [3; 1; 4] \\
  v &= [2 \ 0 \ -1] \\
  s &= 7
\end{align*}
\]

For more information about creating and working with matrices, see “Creating, Concatenating, and Expanding Matrices”.

**Adding and Subtracting Matrices**

Addition and subtraction of matrices and arrays is performed element-by-element, or *element-wise*. For example, adding \( A \) to \( B \) and then subtracting \( A \) from the result recovers \( B \):

\[
\begin{align*}
  X &= A + B \\
  Y &= X - A
\end{align*}
\]

Addition and subtraction require both matrices to have compatible dimensions. If the dimensions are incompatible, an error results:

\[
\begin{align*}
  X &= A + C
\end{align*}
\]

*Error using +*

*Matrix dimensions must agree.*

For more information, see “Array vs. Matrix Operations”.

```
10 7
 2 1
```
Vector Products and Transpose

A row vector and a column vector of the same length can be multiplied in either order. The result is either a scalar, called the *inner product*, or a matrix, called the *outer product*:

\[
\begin{align*}
\mathbf{u} &= \begin{bmatrix} 3; 1; 4 \end{bmatrix}; \\
\mathbf{v} &= \begin{bmatrix} 2 & 0 & -1 \end{bmatrix}; \\
x &= \mathbf{v}^*\mathbf{u} \\
x &= \\
2 \\
x &= \mathbf{u}^*\mathbf{v} \\
x &= \\
\begin{bmatrix} 6 & 0 & -3 \\ 2 & 0 & -1 \\ 8 & 0 & -4 \end{bmatrix}
\end{align*}
\]

For real matrices, the *transpose* operation interchanges \( a_{ij} \) and \( a_{ji} \). For complex matrices, another consideration is whether to take the complex conjugate of complex entries in the array to form the *complex conjugate transpose*. MATLAB uses the apostrophe operator (\( ^* \)) to perform a complex conjugate transpose, and the dot-apostrophe operator (\( .^* \)) to transpose without conjugation. For matrices containing all real elements, the two operators return the same result.

The example matrix \( \mathbf{A} = \text{pascal}(3) \) is symmetric, so \( \mathbf{A}^* \) is equal to \( \mathbf{A} \). However, \( \mathbf{B} = \text{magic}(3) \) is not symmetric, so \( \mathbf{B}^* \) has the elements reflected along the main diagonal:

\[
\begin{align*}
\mathbf{B} &= \text{magic}(3) \\
\mathbf{B} &= \\
&= \\
&= \\
&= \\
\mathbf{X} &= \mathbf{B}^* \\
\mathbf{X} &= \\
&= \\
&= \\
&= \\
&= \\
\end{align*}
\]

For vectors, transposition turns a row vector into a column vector (and vice-versa):

\[
\begin{align*}
\mathbf{x} &= \mathbf{v}^* \\
\mathbf{x} &= \\
&= \\
&= \\
\end{align*}
\]

If \( \mathbf{x} \) and \( \mathbf{y} \) are both real column vectors, then the product \( \mathbf{x}^*\mathbf{y} \) is not defined, but the two products \( \mathbf{x}^*\mathbf{y} \)
and

\( y^*x \)

produce the same scalar result. This quantity is used so frequently, it has three different names: *inner* product, *scalar* product, or *dot* product. There is even a dedicated function for dot products named `dot`.

For a complex vector or matrix, \( z \), the quantity \( z^* \) not only transposes the vector or matrix, but also converts each complex element to its complex conjugate. That is, the sign of the imaginary part of each complex element changes. For example, consider the complex matrix

\[
z = \begin{bmatrix}
1+2i & 7-3i & 3+4i \\
6-2i & 9i & 4+7i
\end{bmatrix}
\]

\[
z =
\begin{bmatrix}
1.0000 + 2.0000i & 7.0000 - 3.0000i & 3.0000 + 4.0000i \\
6.0000 - 2.0000i & 0.0000 + 9.0000i & 4.0000 + 7.0000i
\end{bmatrix}
\]

The complex conjugate transpose of \( z \) is:

\[
z^*
\]

\[
\text{ans} =
\begin{bmatrix}
1.0000 - 2.0000i & 6.0000 + 2.0000i \\
7.0000 + 3.0000i & 0.0000 - 9.0000i \\
3.0000 - 4.0000i & 4.0000 - 7.0000i
\end{bmatrix}
\]

The unconjugated complex transpose, where the complex part of each element retains its sign, is denoted by \( z.' \):

\[
z.'
\]

\[
\text{ans} =
\begin{bmatrix}
1.0000 + 2.0000i & 6.0000 - 2.0000i \\
7.0000 - 3.0000i & 0.0000 + 9.0000i \\
3.0000 + 4.0000i & 4.0000 + 7.0000i
\end{bmatrix}
\]

For complex vectors, the two scalar products \( x^*y \) and \( y^*x \) are complex conjugates of each other, and the scalar product \( x^'*x \) of a complex vector with itself is real.

**Multiplying Matrices**

Multiplication of matrices is defined in a way that reflects composition of the underlying linear transformations and allows compact representation of systems of simultaneous linear equations. The matrix product \( C = AB \) is defined when the column dimension of \( A \) is equal to the row dimension of \( B \), or when one of them is a scalar. If \( A \) is \( m \)-by-\( p \) and \( B \) is \( p \)-by-\( n \), their product \( C \) is \( m \)-by-\( n \). The product can actually be defined using MATLAB for loops, colon notation, and vector dot products:

\[
A = \text{pascal}(3);
B = \text{magic}(3);
m = 3;
n = 3;
\text{for } i = 1:m
    \text{for } j = 1:n
        C(i,j) = A(i,:)*B(:,j);
\end{for}
\]
MATLAB uses an asterisk to denote matrix multiplication, as in $C = A \times B$. Matrix multiplication is not commutative; that is, $A \times B$ is typically not equal to $B \times A$:

$$X = A \times B$$

$$X =
\begin{bmatrix}
15 & 15 & 15 \\
26 & 38 & 26 \\
41 & 70 & 39
\end{bmatrix}$$

$$Y = B \times A$$

$$Y =
\begin{bmatrix}
15 & 28 & 47 \\
15 & 34 & 60 \\
15 & 28 & 43
\end{bmatrix}$$

A matrix can be multiplied on the right by a column vector and on the left by a row vector:

$$u = [3; 1; 4]$$

$$x = A \times u$$

$$x =
\begin{bmatrix}
8 \\
17 \\
30
\end{bmatrix}$$

$$v = [2 \ 0 \ -1]$$

$$y = v \times B$$

$$y =
\begin{bmatrix}
12 & -7 & 10
\end{bmatrix}$$

Rectangular matrix multiplications must satisfy the dimension compatibility conditions. Since $A$ is 3-by-3 and $C$ is 3-by-2, you can multiply them to get a 3-by-2 result (the common inner dimension cancels):

$$X = A \times C$$

$$X =
\begin{bmatrix}
24 & 17 \\
47 & 42 \\
79 & 77
\end{bmatrix}$$

However, the multiplication does not work in the reverse order:

$$Y = C \times A$$

Error using  *
Incorrect dimensions for matrix multiplication. Check that the number of columns in the first matrix matches the number of rows in the second matrix. To perform elementwise multiplication, use './.'.

You can multiply anything with a scalar:
s = 10;
w = s*y

w =

120   -70   100

When you multiply an array by a scalar, the scalar implicitly expands to be the same size as the other input. This is often referred to as *scalar expansion*.

**Identity Matrix**

Generally accepted mathematical notation uses the capital letter $I$ to denote identity matrices, matrices of various sizes with ones on the main diagonal and zeros elsewhere. These matrices have the property that $AI = A$ and $IA = A$ whenever the dimensions are compatible.

The original version of MATLAB could not use $I$ for this purpose because it did not distinguish between uppercase and lowercase letters and $i$ already served as a subscript and as the complex unit. So an English language pun was introduced. The function

```matlab
eye(m,n)
```

returns an $m$-by-$n$ rectangular identity matrix and $\text{eye}(n)$ returns an $n$-by-$n$ square identity matrix.

**Matrix Inverse**

If a matrix $A$ is square and nonsingular (nonzero determinant), then the equations $AX = I$ and $XA = I$ have the same solution $X$. This solution is called the *inverse* of $A$ and is denoted $A^{-1}$. The `inv` function and the expression $A^{-1}$ both compute the matrix inverse.

```matlab
A = pascal(3)
A =
1 1 1
1 2 3
1 3 6
X = inv(A)
X =
 3.0000 -3.0000 1.0000
 -3.0000 5.0000 -2.0000
 1.0000 -2.0000 1.0000
A*X
ans =
 1.0000 0 0
 0.0000 1.0000 -0.0000
 -0.0000 0.0000 1.0000
```

The *determinant* calculated by `det` is a measure of the scaling factor of the linear transformation described by the matrix. When the determinant is exactly zero, the matrix is *singular* and no inverse exists.

d = det(A)
Some matrices are nearly singular, and despite the fact that an inverse matrix exists, the calculation is susceptible to numerical errors. The cond function computes the condition number for inversion, which gives an indication of the accuracy of the results from matrix inversion. The condition number ranges from 1 for a numerically stable matrix to Inf for a singular matrix.

\[ c = \text{cond}(A) \]
\[ c = 61.9839 \]

It is seldom necessary to form the explicit inverse of a matrix. A frequent misuse of inv arises when solving the system of linear equations \( Ax = b \). The best way to solve this equation, from the standpoint of both execution time and numerical accuracy, is to use the matrix backslash operator \( x = A\backslash b \). See mldivide for more information.

**Kronecker Tensor Product**

The Kronecker product, \( \text{kron}(X,Y) \), of two matrices is the larger matrix formed from all possible products of the elements of \( X \) with those of \( Y \). If \( X \) is \( m \)-by-\( n \) and \( Y \) is \( p \)-by-\( q \), then \( \text{kron}(X,Y) \) is \( mp \)-by-\( nq \). The elements are arranged such that each element of \( X \) is multiplied by the entire matrix \( Y \):

\[
\begin{bmatrix}
X(1,1)*Y & X(1,2)*Y & \cdots & X(1,n)*Y \\
X(m,1)*Y & X(m,2)*Y & \cdots & X(m,n)*Y
\end{bmatrix}
\]

The Kronecker product is often used with matrices of zeros and ones to build up repeated copies of small matrices. For example, if \( X \) is the 2-by-2 matrix

\[ X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \]

and \( I = \text{eye}(2,2) \) is the 2-by-2 identity matrix, then:

\[ \text{kron}(X,I) \]
\[ \text{ans} = 
\begin{bmatrix}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2 \\
3 & 0 & 4 & 0 \\
0 & 3 & 0 & 4
\end{bmatrix} \]

and

\[ \text{kron}(I,X) \]
\[ \text{ans} = 
\begin{bmatrix}
1 & 2 & 0 & 0 \\
3 & 4 & 0 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 3 & 4
\end{bmatrix} \]
Aside from `kron`, some other functions that are useful to replicate arrays are `repmat`, `repelem`, and `blkdiag`.

**Vector and Matrix Norms**

The $p$-norm of a vector $x$,

$$ \|x\|_p = \left( \sum |x_i|^p \right)^{1/p}, $$

is computed by `norm(x, p)`. This operation is defined for any value of $p > 1$, but the most common values of $p$ are 1, 2, and $\infty$. The default value is $p = 2$, which corresponds to *Euclidean length* or *vector magnitude*:

```matlab
v = [2 0 -1];
[norm(v, 1) norm(v) norm(v, inf)]
ans =
 3.0000 2.2361 2.0000
```

The $p$-norm of a matrix $A$,

$$ \|A\|_p = \max_{\|x\|_p = 1} \|Ax\|_p, $$

can be computed for $p = 1, 2, \text{ and } \infty$ by `norm(A, p)`. Again, the default value is $p = 2$:

```matlab
A = pascal(3);
[norm(A, 1) norm(A) norm(A, inf)]
ans =
 10.0000 7.8730 10.0000
```

In cases where you want to calculate the norm of each row or column of a matrix, you can use `vecnorm`:

```matlab
vecnorm(A)
ans =
 1.7321 3.7417 6.7823
```

**Using Multithreaded Computation with Linear Algebra Functions**

MATLAB supports multithreaded computation for a number of linear algebra and element-wise numerical functions. These functions automatically execute on multiple threads. For a function or expression to execute faster on multiple CPUs, a number of conditions must be true:

1. The function performs operations that easily partition into sections that execute concurrently. These sections must be able to execute with little communication between processes. They should require few sequential operations.

2. The data size is large enough so that any advantages of concurrent execution outweigh the time required to partition the data and manage separate execution threads. For example, most functions speed up only when the array contains several thousand elements or more.
The operation is not memory-bound; processing time is not dominated by memory access time. As a general rule, complicated functions speed up more than simple functions.

The matrix multiply \((X*Y)\) and matrix power \((X^p)\) operators show significant increase in speed on large double-precision arrays (on order of 10,000 elements). The matrix analysis functions \texttt{det}, \texttt{rcond}, \texttt{hess}, and \texttt{expm} also show significant increase in speed on large double-precision arrays.

Systems of Linear Equations

- “Computational Considerations” on page 3-10
- “General Solution” on page 3-11
- “Square Systems” on page 3-11
- “Overdetermined Systems” on page 3-13
- “Underdetermined Systems” on page 3-15
- “Solving for Several Right-Hand Sides” on page 3-17
- “Iterative Methods” on page 3-18
- “Multithreaded Computation” on page 3-18

Computational Considerations

One of the most important problems in technical computing is the solution of systems of simultaneous linear equations.

In matrix notation, the general problem takes the following form: Given two matrices \(A\) and \(b\), does there exist a unique matrix \(x\), so that \(Ax = b\) or \(xA = b\)?

It is instructive to consider a 1-by-1 example. For example, does the equation

\[
7x = 21
\]

have a unique solution?

The answer, of course, is yes. The equation has the unique solution \(x = 3\). The solution is easily obtained by division:

\[
x = 21/7 = 3.
\]

The solution is not ordinarily obtained by computing the inverse of 7, that is \(7^{-1} = 0.142857...\), and then multiplying \(7^{-1}\) by 21. This would be more work and, if \(7^{-1}\) is represented to a finite number of digits, less accurate. Similar considerations apply to sets of linear equations with more than one unknown; MATLAB solves such equations without computing the inverse of the matrix.

Although it is not standard mathematical notation, MATLAB uses the division terminology familiar in the scalar case to describe the solution of a general system of simultaneous equations. The two division symbols, \texttt{slash}, /, and \texttt{backslash}, \texttt\backslash, correspond to the two MATLAB functions \texttt{mrdivide} and \texttt{mldivide}. These operators are used for the two situations where the unknown matrix appears on the left or right of the coefficient matrix:

\[
x = b/A \quad \text{Denotes the solution to the matrix equation } xA = b, \text{ obtained using } \texttt{mrdivide}.
\]
\( x = A\backslash b \) Denotes the solution to the matrix equation \( Ax = b \), obtained using \texttt{mldivide}.

Think of "dividing" both sides of the equation \( Ax = b \) or \( xA = b \) by \( A \). The coefficient matrix \( A \) is always in the "denominator."

The dimension compatibility conditions for \( x = A\backslash b \) require the two matrices \( A \) and \( b \) to have the same number of rows. The solution \( x \) then has the same number of columns as \( b \) and its row dimension is equal to the column dimension of \( A \). For \( x = b/A \), the roles of rows and columns are interchanged.

In practice, linear equations of the form \( Ax = b \) occur more frequently than those of the form \( xA = b \). Consequently, the backslash is used far more frequently than the slash. The remainder of this section concentrates on the backslash operator; the corresponding properties of the slash operator can be inferred from the identity:

\[
(b/A)' = (A'\backslash b').
\]

The coefficient matrix \( A \) need not be square. If \( A \) has size \( m \)-by-\( n \), then there are three cases:

- \( m = n \) Square system. Seek an exact solution.
- \( m > n \) Overdetermined system, with more equations than unknowns. Find a least-squares solution.
- \( m < n \) Underdetermined system, with fewer equations than unknowns. Find a basic solution with at most \( m \) nonzero components.

**The \texttt{mldivide} Algorithm**

The \texttt{mldivide} operator employs different solvers to handle different kinds of coefficient matrices. The various cases are diagnosed automatically by examining the coefficient matrix. For more information, see the "Algorithms" section of the \texttt{mldivide} reference page.

**General Solution**

The general solution to a system of linear equations \( Ax = b \) describes all possible solutions. You can find the general solution by:

1. Solving the corresponding homogeneous system \( Ax = 0 \). Do this using the \texttt{null} command, by typing \texttt{null(A)}. This returns a basis for the solution space to \( Ax = 0 \). Any solution is a linear combination of basis vectors.

2. Finding a particular solution to the nonhomogeneous system \( Ax = b \).

You can then write any solution to \( Ax = b \) as the sum of the particular solution to \( Ax = b \), from step 2, plus a linear combination of the basis vectors from step 1.

The rest of this section describes how to use MATLAB to find a particular solution to \( Ax = b \), as in step 2.

**Square Systems**

The most common situation involves a square coefficient matrix \( A \) and a single right-hand side column vector \( b \).
Nonsingular Coefficient Matrix

If the matrix $A$ is nonsingular, then the solution, $x = A\backslash b$, is the same size as $b$. For example:

```matlab
A = pascal(3);
u = [3; 1; 4];
x = A\u
```

```
x =
 10
-12
 5
```

It can be confirmed that $A\times x$ is exactly equal to $u$.

If $A$ and $b$ are square and the same size, $x = A\backslash b$ is also that size:

```matlab
b = magic(3);
X = A\b
```

```
X =
 19 -3 -1
-17 4 13
 6 0 -6
```

It can be confirmed that $A\times x$ is exactly equal to $b$.

Both of these examples have exact, integer solutions. This is because the coefficient matrix was chosen to be $\text{pascal}(3)$, which is a full rank matrix (nonsingular).

Singular Coefficient Matrix

A square matrix $A$ is singular if it does not have linearly independent columns. If $A$ is singular, the solution to $Ax = b$ either does not exist, or is not unique. The backslash operator, $A\backslash b$, issues a warning if $A$ is nearly singular or if it detects exact singularity.

If $A$ is singular and $Ax = b$ has a solution, you can find a particular solution that is not unique, by typing

```matlab
P = pinv(A)*b
```

$\text{pinv}(A)$ is a pseudoinverse of $A$. If $Ax = b$ does not have an exact solution, then $\text{pinv}(A)$ returns a least-squares solution.

For example:

```matlab
A = [1 3 7
 -1 4 4
 1 10 18];
```

is singular, as you can verify by typing

```matlab
rank(A)
```

```
ans =
 2
```

Since $A$ is not full rank, it has some singular values equal to zero.
Exact Solutions. For \( b = [5; 2; 12] \), the equation \( Ax = b \) has an exact solution, given by

\[
\text{pinv}(A) \ast b
\]

\[
\text{ans} = \\
0.3850 \\
-0.1103 \\
0.7066
\]

Verify that \( \text{pinv}(A) \ast b \) is an exact solution by typing

\[
A \ast \text{pinv}(A) \ast b
\]

\[
\text{ans} = \\
5.0000 \\
2.0000 \\
12.0000
\]

Least-Squares Solutions. However, if \( b = [3; 6; 0] \), \( Ax = b \) does not have an exact solution. In this case, \( \text{pinv}(A) \ast b \) returns a least-squares solution. If you type

\[
A \ast \text{pinv}(A) \ast b
\]

\[
\text{ans} = \\
-1.0000 \\
4.0000 \\
2.0000
\]

you do not get back the original vector \( b \).

You can determine whether \( Ax = b \) has an exact solution by finding the row reduced echelon form of the augmented matrix \([A \ b]\). To do so for this example, enter

\[
\text{rref}([A \ b])
\]

\[
\text{ans} = \\
1.0000 \quad 0 \quad 2.2857 \quad 0 \\
0 \quad 1.0000 \quad 1.5714 \quad 0 \\
0 \quad 0 \quad 0 \quad 1.0000
\]

Since the bottom row contains all zeros except for the last entry, the equation does not have a solution. In this case, \( \text{pinv}(A) \) returns a least-squares solution.

Overdetermined Systems

This example shows how overdetermined systems are often encountered in various kinds of curve fitting to experimental data.

A quantity \( y \) is measured at several different values of time \( t \) to produce the following observations. You can enter the data and view it in a table with the following statements.

\[
t = [0 .3 .8 1.1 1.6 2.3]';
\]

\[
y = [.82 .72 .63 .60 .55 .50]';
\]

\[
B = \text{table}(t,y)
\]

\[
B=6\times2 \text{ table} \\
\quad \text{t} \quad \text{y}
\]
Try modeling the data with a decaying exponential function

\[ y(t) = c_1 + c_2 e^{-t}. \]

The preceding equation says that the vector \( y \) should be approximated by a linear combination of two other vectors. One is a constant vector containing all ones and the other is the vector with components \( \exp(-t) \). The unknown coefficients, \( c_1 \) and \( c_2 \), can be computed by doing a least-squares fit, which minimizes the sum of the squares of the deviations of the data from the model. There are six equations in two unknowns, represented by a 6-by-2 matrix.

\[
E = \begin{bmatrix} \text{ones(size(t))} & \exp(-t) \end{bmatrix}
\]

\[
E = \begin{bmatrix} 1 & 1.0000 \\ 1 & 0.7408 \\ 1 & 0.4493 \\ 1 & 0.3329 \\ 1 & 0.2019 \\ 1 & 0.1003 \end{bmatrix}
\]

Use the backslash operator to get the least-squares solution.

\[
c = E \backslash y
\]

\[
c = \begin{bmatrix} 0.4760 \\ 0.3413 \end{bmatrix}
\]

In other words, the least-squares fit to the data is

\[ y(t) = 0.4760 + 0.3413 e^{-t}. \]

The following statements evaluate the model at regularly spaced increments in \( t \), and then plot the result together with the original data:

\[
T = (0:0.1:2.5)';
Y = \text{ones(size(T))} \exp(-T) * c;
\text{plot}(T,Y,'-',t,y,'o')</text>
E*c is not exactly equal to y, but the difference might well be less than measurement errors in the original data.

A rectangular matrix A is rank deficient if it does not have linearly independent columns. If A is rank deficient, then the least-squares solution to \( AX = B \) is not unique. \( A\backslash B \) issues a warning if A is rank deficient and produces a least-squares solution. You can use \texttt{lsqminnorm} to find the solution X that has the minimum norm among all solutions.

**Underdetermined Systems**

This example shows how the solution to underdetermined systems is not unique. Underdetermined linear systems involve more unknowns than equations. The matrix left division operation in MATLAB finds a basic least-squares solution, which has at most \( m \) nonzero components for an \( m \)-by-\( n \) coefficient matrix.

Here is a small, random example:

```matlab
R = [6 8 7 3; 3 5 4 1]
rng(0);
b = randi(8,2,1)
R =

6 8 7 3
3 5 4 1
```

Underdetermined Systems
The linear system \( Rp = b \) involves two equations in four unknowns. Since the coefficient matrix contains small integers, it is appropriate to use the `format` command to display the solution in rational format. The particular solution is obtained with

```matlab
format rat
p = R\b
p =
0
17/7
0
-29/7
```

One of the nonzero components is \( p(2) \) because \( R(:,2) \) is the column of \( R \) with largest norm. The other nonzero component is \( p(4) \) because \( R(:,4) \) dominates after \( R(:,2) \) is eliminated.

The complete general solution to the underdetermined system can be characterized by adding \( p \) to an arbitrary linear combination of the null space vectors, which can be found using the `null` function with an option requesting a rational basis.

```matlab
Z = null(R, 'r')
Z =
-1/2 -7/6
-1/2 1/2
1 0
0 1
```

It can be confirmed that \( R*Z \) is zero and that the residual \( R*x - b \) is small for any vector \( x \), where \( x = p + Z*q \).

Since the columns of \( Z \) are the null space vectors, the product \( Z*q \) is a linear combination of those vectors:

\[
Zq = (\tilde{x}_1 \ \tilde{x}_2) \begin{bmatrix} u \\ w \end{bmatrix} = u\tilde{x}_1 + w\tilde{x}_2.
\]

To illustrate, choose an arbitrary \( q \) and construct \( x \).

```matlab
q = [-2; 1];
x = p + Z*q;
```

Calculate the norm of the residual.

```matlab
format short
norm(R*x - b)
ans =
2.6645e-15
```
When infinitely many solutions are available, the solution with minimum norm is of particular interest. You can use `lsqminnorm` to compute the minimum-norm least-squares solution. This solution has the smallest possible value for $\text{norm}(p)$.

\[
p = \text{lsqminnorm}(R,b)
\]

\[
p = \begin{bmatrix}
-207/137 \\
365/137 \\
79/137 \\
-424/137
\end{bmatrix}
\]

Solving for Several Right-Hand Sides

Some problems are concerned with solving linear systems that have the same coefficient matrix $A$, but different right-hand sides $b$. When the different values of $b$ are available at the same time, you can construct $b$ as a matrix with several columns and solve all of the systems of equations at the same time using a single backslash command: $X = A\begin{bmatrix}b_1 & b_2 & b_3 & \ldots \end{bmatrix}$.

However, sometimes the different values of $b$ are not all available at the same time, which means you need to solve several systems of equations consecutively. When you solve one of these systems of equations using slash (/) or backslash (\), the operator factorizes the coefficient matrix $A$ and uses this matrix decomposition to compute the solution. However, each subsequent time you solve a similar system of equations with a different $b$, the operator computes the same decomposition of $A$, which is a redundant computation.

The solution to this problem is to precompute the decomposition of $A$, and then reuse the factors to solve for the different values of $b$. In practice, however, precomputing the decomposition in this manner can be difficult since you need to know which decomposition to compute (LU, LDL, Cholesky, and so on) as well as how to multiply the factors to solve the problem. For example, with LU decomposition you need to solve two linear systems to solve the original system $Ax = b$:

\[
[L,U] = \text{lu}(A);
X = U \backslash (L \backslash b);
\]

Instead, the recommended method for solving linear systems with several consecutive right-hand sides is to use decomposition objects. These objects enable you to leverage the performance benefits of precomputing the matrix decomposition, but they do not require knowledge of how to use the matrix factors. You can replace the previous LU decomposition with:

\[
dA = \text{decomposition}(A,'lu');
X = dA\backslash b;
\]

If you are unsure which decomposition to use, `decomposition(A)` chooses the correct type based on the properties of $A$, similar to what backslash does.

Here is a simple test of the possible performance benefits of this approach. The test solves the same sparse linear system 100 times using both backslash (\) and decomposition.

\[
n = 1e3;
A = \text{sprand}(n,n,0.2) + \text{speye}(n);
b = \text{ones}(n,1);
\]

% Backslash solution
tic
for k = 1:100
    x = A\b;
end
toc

Elapsed time is 9.006156 seconds.

% decomposition solution
tic
dA = decomposition(A);
for k = 1:100
    x = dA\b;
end
toc

Elapsed time is 0.374347 seconds.

For this problem, the decomposition solution is much faster than using backslash alone, yet the syntax remains simple.

Iterative Methods

If the coefficient matrix A is large and sparse, factorization methods are generally not efficient. Iterative methods generate a series of approximate solutions. MATLAB provides several iterative methods to handle large, sparse input matrices.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pcg</td>
<td>Preconditioned conjugate gradients method. This method is appropriate for Hermitian positive definite coefficient matrix A.</td>
</tr>
<tr>
<td>bicg</td>
<td>BiConjugate Gradients Method</td>
</tr>
<tr>
<td>bicgstab</td>
<td>BiConjugate Gradients Stabilized Method</td>
</tr>
<tr>
<td>bicgstyl</td>
<td>BiCGStab(l) Method</td>
</tr>
<tr>
<td>cgs</td>
<td>Conjugate Gradients Squared Method</td>
</tr>
<tr>
<td>gmres</td>
<td>Generalized Minimum Residual Method</td>
</tr>
<tr>
<td>lsqr</td>
<td>LSQR Method</td>
</tr>
<tr>
<td>minres</td>
<td>Minimum Residual Method. This method is appropriate for Hermitian coefficient matrix A.</td>
</tr>
<tr>
<td>qmr</td>
<td>Quasi-Minimal Residual Method</td>
</tr>
<tr>
<td>symmlq</td>
<td>Symmetric LQ Method</td>
</tr>
<tr>
<td>tfqmr</td>
<td>Transpose-Free QMR Method</td>
</tr>
</tbody>
</table>

Multithreaded Computation

MATLAB supports multithreaded computation for a number of linear algebra and element-wise numerical functions. These functions automatically execute on multiple threads. For a function or expression to execute faster on multiple CPUs, a number of conditions must be true:

1. The function performs operations that easily partition into sections that execute concurrently. These sections must be able to execute with little communication between processes. They should require few sequential operations.
The data size is large enough so that any advantages of concurrent execution outweigh the time required to partition the data and manage separate execution threads. For example, most functions speed up only when the array contains several thousand elements or more.

The operation is not memory-bound; processing time is not dominated by memory access time. As a general rule, complicated functions speed up more than simple functions.

inv, lscov, linsolve, and mldivide show significant increase in speed on large double-precision arrays (on order of 10,000 elements or more) when multithreading is enabled.

**Factorizations**

- “Introduction” on page 3-19
- “Cholesky Factorization” on page 3-19
- “LU Factorization” on page 3-20
- “QR Factorization” on page 3-21
- “Using Multithreaded Computation for Factorization” on page 3-24

**Introduction**

All three of the matrix factorizations discussed in this section make use of triangular matrices, where all the elements either above or below the diagonal are zero. Systems of linear equations involving triangular matrices are easily and quickly solved using either forward or back substitution.

**Cholesky Factorization**

The Cholesky factorization expresses a symmetric matrix as the product of a triangular matrix and its transpose

\[ A = R' R, \]

where \( R \) is an upper triangular matrix.

Not all symmetric matrices can be factored in this way; the matrices that have such a factorization are said to be positive definite. This implies that all the diagonal elements of \( A \) are positive and that the off-diagonal elements are “not too big.” The Pascal matrices provide an interesting example. Throughout this chapter, the example matrix \( A \) has been the 3-by-3 Pascal matrix. Temporarily switch to the 6-by-6:

\[
A = \text{pascal}(6)
\]

\[
A = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 3 & 6 & 10 & 15 & 21 \\
1 & 4 & 10 & 20 & 35 & 56 \\
1 & 5 & 15 & 35 & 70 & 126 \\
1 & 6 & 21 & 56 & 126 & 252 \\
\end{bmatrix}
\]

The elements of \( A \) are binomial coefficients. Each element is the sum of its north and west neighbors. The Cholesky factorization is

\[
R = \text{chol}(A)
\]
The elements are again binomial coefficients. The fact that $R^* R$ is equal to $A$ demonstrates an identity involving sums of products of binomial coefficients.

**Note** The Cholesky factorization also applies to complex matrices. Any complex matrix that has a Cholesky factorization satisfies

$$A^* = A$$

and is said to be *Hermitian positive definite*.

The Cholesky factorization allows the linear system

$$Ax = b$$

to be replaced by

$$R'Rx = b.$$ 

Because the backslash operator recognizes triangular systems, this can be solved in the MATLAB environment quickly with

$$x = R \backslash (R' \backslash b)$$

If $A$ is $n$-by-$n$, the computational complexity of `chol(A)` is $O(n^3)$, but the complexity of the subsequent backslash solutions is only $O(n^2)$.

**LU Factorization**

LU factorization, or Gaussian elimination, expresses any square matrix $A$ as the product of a permutation of a lower triangular matrix and an upper triangular matrix

$$A = LU,$$

where $L$ is a permutation of a lower triangular matrix with ones on its diagonal and $U$ is an upper triangular matrix.

The permutations are necessary for both theoretical and computational reasons. The matrix

$$\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}$$

cannot be expressed as the product of triangular matrices without interchanging its two rows. Although the matrix

$$\begin{bmatrix}
\varepsilon & 1 \\
1 & 0
\end{bmatrix}$$

is.
can be expressed as the product of triangular matrices, when $\varepsilon$ is small, the elements in the factors are large and magnify errors, so even though the permutations are not strictly necessary, they are desirable. Partial pivoting ensures that the elements of $L$ are bounded by one in magnitude and that the elements of $U$ are not much larger than those of $A$.

For example:

$$[L,U] = lu(B)$$

$$L =
\begin{bmatrix}
1.0000 & 0 & 0 \\
0.3750 & 0.5441 & 1.0000 \\
0.5000 & 1.0000 & 0
\end{bmatrix}
$$

$$U =
\begin{bmatrix}
8.0000 & 1.0000 & 6.0000 \\
0 & 8.5000 & -1.0000 \\
0 & 0 & 5.2941
\end{bmatrix}
$$

The LU factorization of $A$ allows the linear system

$$A\cdot x = b$$

to be solved quickly with

$$x = U\cdot (L\cdot b)$$

Determinants and inverses are computed from the LU factorization using

$$\det(A) = \det(L)\cdot\det(U)$$

and

$$\operatorname{inv}(A) = \operatorname{inv}(U)\cdot\operatorname{inv}(L)$$

You can also compute the determinants using $\det(A) = \prod(\operatorname{diag}(U))$, though the signs of the determinants might be reversed.

**QR Factorization**

An *orthogonal* matrix, or a matrix with orthonormal columns, is a real matrix whose columns all have unit length and are perpendicular to each other. If $Q$ is orthogonal, then

$$Q^T Q = I,$$

where $I$ is the identity matrix.

The simplest orthogonal matrices are two-dimensional coordinate rotations:

$$
\begin{bmatrix}
\cos(\theta) & \sin(\theta) \\
-\sin(\theta) & \cos(\theta)
\end{bmatrix}
$$

For complex matrices, the corresponding term is *unitary*. Orthogonal and unitary matrices are desirable for numerical computation because they preserve length, preserve angles, and do not magnify errors.
The orthogonal, or QR, factorization expresses any rectangular matrix as the product of an orthogonal or unitary matrix and an upper triangular matrix. A column permutation might also be involved:

\[ A = QR \]

or

\[ AP = QR, \]

where \( Q \) is orthogonal or unitary, \( R \) is upper triangular, and \( P \) is a permutation.

There are four variants of the QR factorization—full or economy size, and with or without column permutation.

Overdetermined linear systems involve a rectangular matrix with more rows than columns, that is \( m \)-by-\( n \) with \( m > n \). The full-size QR factorization produces a square, \( m \)-by-\( m \) orthogonal \( Q \) and a rectangular \( m \)-by-\( n \) upper triangular \( R \):

\[
\begin{bmatrix}
0.6191 & 0.1406 & -0.1899 & -0.5058 & 0.5522 \\
0.1506 & 0.4084 & 0.5034 & 0.5974 & 0.4475 \\
0.3954 & -0.5564 & 0.6869 & -0.1478 & -0.2008 \\
0.3167 & 0.6676 & 0.1351 & -0.1729 & -0.6370 \\
0.5808 & -0.2410 & -0.4695 & 0.5792 & -0.2207
\end{bmatrix}
\]

\[
\begin{bmatrix}
1.5346 & 1.0663 & 1.2010 & 1.4036 \\
0 & 0.7245 & 0.3474 & -0.8126 \\
0 & 0 & 0.9320 & 0.6596 \\
0 & 0 & 0 & 0.6648 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

In many cases, the last \( m - n \) columns of \( Q \) are not needed because they are multiplied by the zeros in the bottom portion of \( R \). So the economy-size QR factorization produces a rectangular, \( m \)-by-\( n \) \( Q \) with orthonormal columns and a square \( n \)-by-\( n \) upper triangular \( R \). For the 5-by-4 example, this is not much of a saving, but for larger, highly rectangular matrices, the savings in both time and memory can be quite important:

\[
\begin{bmatrix}
0.6191 & 0.1406 & -0.1899 & -0.5058 \\
0.1506 & 0.4084 & 0.5034 & 0.5974 \\
0.3954 & -0.5564 & 0.6869 & -0.1478 \\
0.3167 & 0.6676 & 0.1351 & -0.1729 \\
0.5808 & -0.2410 & -0.4695 & 0.5792
\end{bmatrix}
\]

\[
\begin{bmatrix}
1.5346 & 1.0663 & 1.2010 & 1.4036 \\
0 & 0.7245 & 0.3474 & -0.8126 \\
0 & 0 & 0.9320 & 0.6596 \\
0 & 0 & 0 & 0.6648 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
In contrast to the LU factorization, the QR factorization does not require any pivoting or permutations. But an optional column permutation, triggered by the presence of a third output argument, is useful for detecting singularity or rank deficiency. At each step of the factorization, the column of the remaining unfactored matrix with largest norm is used as the basis for that step. This ensures that the diagonal elements of $R$ occur in decreasing order and that any linear dependence among the columns is almost certainly be revealed by examining these elements. For the small example given here, the second column of $C$ has a larger norm than the first, so the two columns are exchanged:

\[
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\]

The QR factorization transforms an overdetermined linear system into an equivalent triangular system. The expression

\[
\text{norm}(A\times x - b)
\]

equals

\[
\text{norm}(Q\times R\times x - b)
\]
Multiplication by orthogonal matrices preserves the Euclidean norm, so this expression is also equal to
\[ \text{norm}(R^x - y) \]
where \( y = Q^'b \). Since the last \( m-n \) rows of \( R \) are zero, this expression breaks into two pieces:
\[ \text{norm}(R(1:n,1:n)*x - y(1:n)) \]
and
\[ \text{norm}(y(n+1:m)) \]
When \( A \) has full rank, it is possible to solve for \( x \) so that the first of these expressions is zero. Then the second expression gives the norm of the residual. When \( A \) does not have full rank, the triangular structure of \( R \) makes it possible to find a basic solution to the least-squares problem.

Using Multithreaded Computation for Factorization

MATLAB software supports multithreaded computation for a number of linear algebra and element-wise numerical functions. These functions automatically execute on multiple threads. For a function or expression to execute faster on multiple CPUs, a number of conditions must be true:

1. The function performs operations that easily partition into sections that execute concurrently. These sections must be able to execute with little communication between processes. They should require few sequential operations.
2. The data size is large enough so that any advantages of concurrent execution outweigh the time required to partition the data and manage separate execution threads. For example, most functions speed up only when the array contains several thousand elements or more.
3. The operation is not memory-bound; processing time is not dominated by memory access time. As a general rule, complicated functions speed up more than simple functions.

lu and qr show significant increase in speed on large double-precision arrays (on order of 10,000 elements).

Powers and Exponentials

This topic shows how to compute matrix powers and exponentials using a variety of methods.

Positive Integer Powers

If \( A \) is a square matrix and \( p \) is a positive integer, then \( A^p \) effectively multiplies \( A \) by itself \( p-1 \) times. For example:
\[
A = \begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 6
\end{bmatrix};
\]
\[
A^2
\]
\[
\begin{bmatrix}
3 & 6 & 10 \\
6 & 14 & 25 \\
10 & 25 & 46
\end{bmatrix}
\]
Inverse and Fractional Powers

If \( A \) is square and nonsingular, then \( A^{(-p)} \) effectively multiplies \( \text{inv}(A) \) by itself \( p-1 \) times.

\[ A^{(-3)} \]

\[
\begin{bmatrix}
145.0000 & -207.0000 & 81.0000 \\
-207.0000 & 298.0000 & -117.0000 \\
81.0000 & -117.0000 & 46.0000
\end{bmatrix}
\]

MATLAB® calculates \( \text{inv}(A) \) and \( A^{-1} \) with the same algorithm, so the results are exactly the same. Both \( \text{inv}(A) \) and \( A^{-1} \) produce warnings if the matrix is close to being singular.

\[
\text{isequal}(\text{inv}(A),A^{-1})
\]

\[
\text{ans} = \text{logical} 1
\]

Fractional powers, such as \( A^{(2/3)} \), are also permitted. The results using fractional powers depend on the distribution of the eigenvalues of the matrix.

\[ A^{(2/3)} \]

\[
\begin{bmatrix}
0.8901 & 0.5882 & 0.3684 \\
0.5882 & 1.2035 & 1.3799 \\
0.3684 & 1.3799 & 3.1167
\end{bmatrix}
\]

Element-by-Element Powers

The \( .^2 \) operator calculates element-by-element powers. For example, to square each element in a matrix you can use \( A.^2 \).

\[ A.^2 \]

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 4 & 9 \\
1 & 9 & 36
\end{bmatrix}
\]

Square Roots

The \( \text{sqrt} \) function is a convenient way to calculate the square root of each element in a matrix. An alternate way to do this is \( A.^{(1/2)} \).

\[ \text{sqrt}(A) \]

\[
\begin{bmatrix}
1.0000 & 1.0000 & 1.0000 \\
1.0000 & 1.4142 & 1.7321
\end{bmatrix}
\]
For other roots, you can use `nthroot`. For example, calculate \( A^{(1/3)} \).

\[
\text{nthroot}(A,3)
\]

\[
\begin{array}{ccc}
1.0000 & 1.0000 & 1.0000 \\
1.0000 & 1.2599 & 1.4422 \\
1.0000 & 1.4422 & 1.8171 \\
\end{array}
\]

These element-wise roots differ from the matrix square root, which calculates a second matrix \( B \) such that \( A = BB \). The function `sqrtm(A)` computes \( A^{(1/2)} \) by a more accurate algorithm. The \( m \) in `sqrtm` distinguishes this function from `sqrt(A)`, which, like \( A^{(1/2)} \), does its job element-by-element.

\[
B = \text{sqrtm}(A)
\]

\[
\begin{array}{ccc}
0.8775 & 0.4387 & 0.1937 \\
0.4387 & 1.0099 & 0.8874 \\
0.1937 & 0.8874 & 2.2749 \\
\end{array}
\]

\[
B^2
\]

\[
\begin{array}{ccc}
1.0000 & 1.0000 & 1.0000 \\
1.0000 & 2.0000 & 3.0000 \\
1.0000 & 3.0000 & 6.0000 \\
\end{array}
\]

**Scalar Bases**

In addition to raising a matrix to a power, you also can raise a scalar to the power of a matrix.

\[
2^A
\]

\[
\begin{array}{ccc}
10.4630 & 21.6602 & 38.5862 \\
21.6602 & 53.2807 & 94.6010 \\
38.5862 & 94.6010 & 173.7734 \\
\end{array}
\]

When you raise a scalar to the power of a matrix, MATLAB uses the eigenvalues and eigenvectors of the matrix to calculate the matrix power. If \([V,D] = \text{eig}(A)\), then \(2^A = V 2^D V^{-1}\).

\[
[V,D] = \text{eig}(A); \\
V*2^D*V^{-1}
\]

\[
\begin{array}{ccc}
10.4630 & 21.6602 & 38.5862 \\
\end{array}
\]
Matrix Exponentials

The matrix exponential is a special case of raising a scalar to a matrix power. The base for a matrix exponential is Euler’s number \( e = \exp(1) \).

\[
e = \exp(1); \\
e^A
\]

\[
\begin{array}{ccc}
0.1008 & 0.2407 & 0.4368 \\
0.2407 & 0.5867 & 1.0654 \\
0.4368 & 1.0654 & 1.9418 \\
\end{array}
\]

The \texttt{expm} function is a more convenient way to calculate matrix exponentials.

\[
\text{expm}(A)
\]

\[
\begin{array}{ccc}
0.1008 & 0.2407 & 0.4368 \\
0.2407 & 0.5867 & 1.0654 \\
0.4368 & 1.0654 & 1.9418 \\
\end{array}
\]

The matrix exponential can be calculated in a number of ways. See “Matrix Exponentials” for more information.

Dealing with Small Numbers

The MATLAB functions \texttt{log1p} and \texttt{expm1} calculate \( \log(1 + x) \) and \( e^x - 1 \) accurately for very small values of \( x \). For example, if you try to add a number smaller than machine precision to 1, then the result gets rounded to 1.

\[
\log(1 + \texttt{eps}/2)
\]

\[
\text{ans} = 0
\]

However, \texttt{log1p} is able to return a more accurate answer.

\[
\text{log1p}(	exttt{eps}/2)
\]

\[
\text{ans} = 1.1102\text{e-}16
\]

Likewise for \( e^x - 1 \), if \( x \) is very small then it is rounded to zero.

\[
\exp(\texttt{eps}/2) - 1
\]

\[
\text{ans} = 0
\]

Again, \texttt{expm1} is able to return a more accurate answer.
expm1(eps/2)
ans = 1.1102e-16

**Eigenvalues**

- “Eigenvalue Decomposition” on page 3-28
- “Multiple Eigenvalues” on page 3-29
- “Schur Decomposition” on page 3-29

**Eigenvalue Decomposition**

An *eigenvalue* and *eigenvector* of a square matrix $A$ are, respectively, a scalar $\lambda$ and a nonzero vector $\upsilon$ that satisfy

$$A\upsilon = \lambda \upsilon.$$  

With the eigenvalues on the diagonal of a diagonal matrix $\Lambda$ and the corresponding eigenvectors forming the columns of a matrix $V$, you have

$$AV = V\Lambda.$$ 

If $V$ is nonsingular, this becomes the eigenvalue decomposition

$$A = V\Lambda V^{-1}.$$ 

A good example is the coefficient matrix of the differential equation $dx/dt = Ax$:

$$A = \begin{bmatrix} 0 & -6 & -1 \\ 6 & 2 & -16 \\ -5 & 20 & -10 \end{bmatrix}$$

The solution to this equation is expressed in terms of the matrix exponential $x(t) = e^{tA}x(0)$. The statement

$$\text{lambda} = \text{eig}(A)$$

produces a column vector containing the eigenvalues of $A$. For this matrix, the eigenvalues are complex:

$$\text{lambda} = \begin{bmatrix} -3.0710 \\ -2.4645+17.6008i \\ -2.4645-17.6008i \end{bmatrix}$$

The real part of each of the eigenvalues is negative, so $e^{\Omega t}$ approaches zero as $t$ increases. The nonzero imaginary part of two of the eigenvalues, $\pm \omega$, contributes the oscillatory component, $\sin(\omega t)$, to the solution of the differential equation.

With two output arguments, `eig` computes the eigenvectors and stores the eigenvalues in a diagonal matrix:

$$[V,D] = \text{eig}(A)$$

$$V =$$
\[
D = 
\begin{bmatrix}
-0.8326 & 0.2003 - 0.1394i & 0.2003 + 0.1394i \\
-0.3553 & -0.2110 - 0.6447i & -0.2110 + 0.6447i \\
-0.4248 & -0.6930 & -0.6930
\end{bmatrix}
\]

The first eigenvector is real and the other two vectors are complex conjugates of each other. All three vectors are normalized to have Euclidean length, \( \text{norm}(v, 2) \), equal to one.

The matrix \( V^*D^*\text{inv}(V) \), which can be written more succinctly as \( V^*D/V \), is within round-off error of \( A \). And, \( \text{inv}(V)^*A*V \), or \( V\backslash A*V \), is within round-off error of \( D \).

**Multiple Eigenvalues**

Some matrices do not have an eigenvector decomposition. These matrices are not diagonalizable. For example:

\[
A = \begin{bmatrix}
1 & -2 & 1 \\
0 & 1 & 4 \\
0 & 0 & 3
\end{bmatrix}
\]

For this matrix

\[ [V,D] = \text{eig}(A) \]

produces

\[
V = 
\begin{bmatrix}
1.0000 & 1.0000 & -0.5571 \\
0 & 0.0000 & 0.7428 \\
0 & 0 & 0.3714
\end{bmatrix}
\]

\[
D = 
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{bmatrix}
\]

There is a double eigenvalue at \( \lambda = 1 \). The first and second columns of \( V \) are the same. For this matrix, a full set of linearly independent eigenvectors does not exist.

**Schur Decomposition**

Many advanced matrix computations do not require eigenvalue decompositions. They are based, instead, on the Schur decomposition

\[ A = USU^\prime, \]

where \( U \) is an orthogonal matrix and \( S \) is a block upper-triangular matrix with 1-by-1 and 2-by-2 blocks on the diagonal. The eigenvalues are revealed by the diagonal elements and blocks of \( S \), while the columns of \( U \) provide an orthogonal basis, which has much better numerical properties than a set of eigenvectors.
For example, compare the eigenvalue and Schur decompositions of this defective matrix:

\[
A = \begin{bmatrix}
6 & 12 & 19 \\
-9 & -20 & -33 \\
4 & 9 & 15
\end{bmatrix};
\]

\[
[V,D] = \text{eig}(A)
\]

\[
V =
\begin{bmatrix}
-0.4741 + 0.0000i & -0.4082 - 0.0000i & -0.4082 + 0.0000i \\
0.8127 + 0.0000i & 0.8165 + 0.0000i & 0.8165 + 0.0000i \\
-0.3386 + 0.0000i & -0.4082 + 0.0000i & -0.4082 - 0.0000i
\end{bmatrix}
\]

\[
D =
\begin{bmatrix}
-1.0000 + 0.0000i & 0.0000 + 0.0000i & 0.0000 + 0.0000i \\
0.0000 + 0.0000i & 1.0000 + 0.0000i & 0.0000 + 0.0000i \\
0.0000 + 0.0000i & 0.0000 + 0.0000i & 1.0000 - 0.0000i
\end{bmatrix}
\]

\[
[U,S] = \text{schur}(A)
\]

\[
U =
\begin{bmatrix}
-0.4741 & 0.6648 & 0.5774 \\
0.8127 & 0.0782 & 0.5774 \\
-0.3386 & -0.7430 & 0.5774
\end{bmatrix}
\]

\[
S =
\begin{bmatrix}
-1.0000 & 20.7846 & -44.6948 \\
0 & 1.0000 & -0.6096 \\
0 & 0.0000 & 1.0000
\end{bmatrix}
\]

The matrix \(A\) is defective since it does not have a full set of linearly independent eigenvectors (the second and third columns of \(V\) are the same). Since not all columns of \(V\) are linearly independent, it has a large condition number of about \(~1e8\). However, \text{schur} is able to calculate three different basis vectors in \(U\). Since \(U\) is orthogonal, \(\text{cond}(U) = 1\).

The matrix \(S\) has the real eigenvalue as the first entry on the diagonal and the repeated eigenvalue represented by the lower right 2-by-2 block. The eigenvalues of the 2-by-2 block are also eigenvalues of \(A\):

\[
\text{eig}(S(2:3,2:3))
\]

\[
\text{ans} =
\begin{bmatrix}
1.0000 + 0.0000i \\
1.0000 - 0.0000i
\end{bmatrix}
\]

**Singular Values**

A singular value and corresponding singular vectors of a rectangular matrix \(A\) are, respectively, a scalar \(\sigma\) and a pair of vectors \(u\) and \(v\) that satisfy
\[ Av = \sigma u \]
\[ A^H u = \sigma v, \]

where \( A^H \) is the Hermitian transpose of \( A \). The singular vectors \( u \) and \( v \) are typically scaled to have a norm of 1. Also, if \( u \) and \( v \) are singular vectors of \( A \), then \(-u\) and \(-v\) are singular vectors of \( A \) as well.

The singular values \( \sigma \) are always real and nonnegative, even if \( A \) is complex. With the singular values in a diagonal matrix \( \Sigma \) and the corresponding singular vectors forming the columns of two orthogonal matrices \( U \) and \( V \), you obtain the equations

\[ AV = U \Sigma \]
\[ A^H U = V \Sigma. \]

Since \( U \) and \( V \) are unitary matrices, multiplying the first equation by \( V^H \) on the right yields the singular value decomposition equation

\[ A = U \Sigma V^H. \]

The full singular value decomposition of an \( m \)-by-\( n \) matrix involves:

- \( m \)-by-\( m \) matrix \( U \)
- \( m \)-by-\( n \) matrix \( \Sigma \)
- \( n \)-by-\( n \) matrix \( V \)

In other words, \( U \) and \( V \) are both square, and \( \Sigma \) is the same size as \( A \). If \( A \) has many more rows than columns (\( m > n \)), then the resulting \( m \)-by-\( n \) matrix \( U \) is large. However, most of the columns in \( U \) are multiplied by zeros in \( \Sigma \). In this situation, the economy-sized decomposition saves both time and storage by producing an \( m \)-by-\( n \) \( U \), an \( n \)-by-\( n \) \( \Sigma \) and the same \( V \):

![Matrix Decomposition Diagram](image)

The eigenvalue decomposition is the appropriate tool for analyzing a matrix when it represents a mapping from a vector space into itself, as it does for an ordinary differential equation. However, the singular value decomposition is the appropriate tool for analyzing a mapping from one vector space into another vector space, possibly with a different dimension. Most systems of simultaneous linear equations fall into this second category.

If \( A \) is square, symmetric, and positive definite, then its eigenvalue and singular value decompositions are the same. But, as \( A \) departs from symmetry and positive definiteness, the difference between the
two decompositions increases. In particular, the singular value decomposition of a real matrix is always real, but the eigenvalue decomposition of a real, nonsymmetric matrix might be complex.

For the example matrix

\[
A = \begin{bmatrix}
9 & 4 \\
6 & 8 \\
2 & 7 \\
\end{bmatrix}
\]

the full singular value decomposition is

\[
[U, S, V] = \text{svd}(A)
\]

\[
U = \begin{bmatrix}
0.6105 & -0.7174 & 0.3355 \\
0.6646 & 0.2336 & -0.7098 \\
0.4308 & 0.6563 & 0.6194 \\
\end{bmatrix}
\]

\[
S = \begin{bmatrix}
14.9359 & 0 \\
0 & 5.1883 \\
0 & 0 \\
\end{bmatrix}
\]

\[
V = \begin{bmatrix}
0.6925 & -0.7214 \\
0.7214 & 0.6925 \\
\end{bmatrix}
\]

You can verify that \(U*S*V'\) is equal to \(A\) to within round-off error. For this small problem, the economy size decomposition is only slightly smaller.

\[
[U, S, V] = \text{svd}(A, 0)
\]

\[
U = \begin{bmatrix}
0.6105 & -0.7174 \\
0.6646 & 0.2336 \\
0.4308 & 0.6563 \\
\end{bmatrix}
\]

\[
S = \begin{bmatrix}
14.9359 & 0 \\
0 & 5.1883 \\
\end{bmatrix}
\]

\[
V = \begin{bmatrix}
0.6925 & -0.7214 \\
0.7214 & 0.6925 \\
\end{bmatrix}
\]

Again, \(U*S*V'\) is equal to \(A\) to within round-off error.
Low-Rank SVD Approximations

For large sparse matrices, using svd to calculate all of the singular values and singular vectors is not always practical. For example, if you need to know just a few of the largest singular values, then calculating all of the singular values of a 5000-by-5000 sparse matrix is extra work.

In cases where only a subset of the singular values and singular vectors are required, the svds and svdsketch functions are preferred over svd.

<table>
<thead>
<tr>
<th>Function</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>svds</td>
<td>Use svds to calculate a rank-k approximation of the SVD. You can specify whether the subset of singular values should be the largest, the smallest, or the closest to a specific number. svds generally calculates the best possible rank-k approximation.</td>
</tr>
<tr>
<td>svdsketch</td>
<td>Use svdsketch to calculate a partial SVD of the input matrix satisfying a specified tolerance. While svds requires that you specify the rank, svdsketch adaptively determines the rank of the matrix sketch based on the specified tolerance. The rank-k approximation that svdsketch ultimately uses satisfies the tolerance, but unlike svds, it is not guaranteed to be the best one possible.</td>
</tr>
</tbody>
</table>

For example, consider a 1000-by-1000 random sparse matrix with a density of about 30%.

```matlab
n = 1000;
A = sprand(n,n,0.3);
```

The six largest singular values are

```
S = svds(A)
```

```
S =
130.2184
16.4358
16.4119
16.3688
16.3242
16.2838
```

Also, the six smallest singular values are

```
S = svds(A,6,'smallest')
```

```
S =
0.0740
0.0574
0.0388
0.0282
```
For smaller matrices that can fit in memory as a full matrix, `full(A)`, using `svd(full(A))` might still be quicker than `svds` or `svdsketch`. However, for truly large and sparse matrices, using `svds` or `svdsketch` becomes necessary.
Operations on Nonlinear Functions

In this section...

“Function Handles” on page 3-35
“Function Functions” on page 3-35

Function Handles

You can create a handle to any MATLAB function, and then use that handle as a means of referencing the function. A function handle is typically passed in an argument list to other functions, which can then execute, or evaluate, the function using the handle.

Construct a function handle in MATLAB using the at sign, @, before the function name. The following example creates a function handle for the sin function and assigns it to the variable fhandle:

```matlab
fhandle = @sin;
```

You can call a function by means of its handle in the same way that you would call the function using its name. The syntax is

```matlab
fhandle(arg1, arg2, ...);
```

The function `plot_fhandle`, shown below, receives a function handle and data, generates y-axis data using the function handle, and plots it:

```matlab
function plot_fhandle(fhandle, data)
 plot(data, fhandle(data))
```

When you call `plot_fhandle` with a handle to the sin function and the argument shown below, the resulting evaluation produces a sine wave plot:

```matlab
plot_fhandle(@sin, -pi:0.01:pi)
```

Function Functions

A class of functions called “function functions” works with nonlinear functions of a scalar variable. That is, one function works on another function. The function functions include

- Zero finding
- Optimization
- Quadrature
- Ordinary differential equations

MATLAB represents the nonlinear function by the file that defines it. For example, here is a simplified version of the function `humps` from the `matlab/demos` folder:

```matlab
function y = humps(x)
 y = 1./((x-.3).^2 + .01) + 1./((x-.9).^2 + .04) - 6;
```

Evaluate this function at a set of points in the interval 0 ≤ x ≤ 1 with

```matlab
x = 0:.002:1;
y = humps(x);
```
Then plot the function with

\[ \text{plot}(x,y) \]

The graph shows that the function has a local minimum near \( x = 0.6 \). The function \texttt{fminsearch} finds the \textit{minimizer}, the value of \( x \) where the function takes on this minimum. The first argument to \texttt{fminsearch} is a function handle to the function being minimized and the second argument is a rough guess at the location of the minimum:

\[
p = \text{fminsearch}(@\text{humps},.5)
\]
\[
p = \quad 0.6370
\]

To evaluate the function at the minimizer,

\[
\text{humps}(p)
\]
\[
\text{ans} = \quad 11.2528
\]

Numerical analysts use the terms \textit{quadrature} and \textit{integration} to distinguish between numerical approximation of definite integrals and numerical integration of ordinary differential equations. MATLAB quadrature routines are \texttt{quad} and \texttt{quadl}. The statement

\[
Q = \text{quadl}(@\text{humps},0,1)
\]

computes the area under the curve in the graph and produces
\[ Q = 29.8583 \]

Finally, the graph shows that the function is never zero on this interval. So, if you search for a zero with

\[ z = \text{fzero}(@\text{humps},.5) \]

you will find one outside the interval:

\[ z = -0.1316 \]
Multivariate Data

MATLAB uses column-oriented analysis for multivariate statistical data. Each column in a data set represents a variable and each row an observation. The \((i,j)\)th element is the \(i\)th observation of the \(j\)th variable.

As an example, consider a data set with three variables:

- Heart rate
- Weight
- Hours of exercise per week

For five observations, the resulting array might look like

\[
D = \begin{bmatrix}
72 & 134 & 3.2 \\
81 & 201 & 3.5 \\
69 & 156 & 7.1 \\
82 & 148 & 2.4 \\
75 & 170 & 1.2 \\
\end{bmatrix}
\]

The first row contains the heart rate, weight, and exercise hours for patient 1, the second row contains the data for patient 2, and so on. Now you can apply many MATLAB data analysis functions to this data set. For example, to obtain the mean and standard deviation of each column, use

\[
\text{mu} = \text{mean}(D), \quad \text{sigma} = \text{std}(D)
\]

\[
\begin{array}{ccc}
\text{mu} &=& 75.8 \quad 161.8 \quad 3.48 \\
\text{sigma} &=& 5.6303 \quad 25.499 \quad 2.2107 \\
\end{array}
\]

For a list of the data analysis functions available in MATLAB, type

\text{help datafun}

If you have access to the Statistics and Machine Learning Toolbox™ software, type

\text{help stats}
Data Analysis

Introduction

Every data analysis has some standard components:

- Preprocessing — Consider outliers and missing values, and smooth data to identify possible models.
- Summarizing — Compute basic statistics to describe the overall location, scale, and shape of the data.
- Visualizing — Plot data to identify patterns and trends.
- Modeling — Give data trends fuller descriptions, suitable for predicting new values.

Data analysis moves among these components with two basic goals in mind:

1. Describe the patterns in the data with simple models that lead to accurate predictions.
2. Understand the relationships among variables that lead to the model.

This section explains how to carry out a basic data analysis in the MATLAB environment.

Preprocessing Data

This example shows how to preprocess data for analysis.

Overview

Begin a data analysis by loading data into suitable MATLAB® container variables and sorting out the "good" data from the "bad." This is a preliminary step that assures meaningful conclusions in subsequent parts of the analysis.

Loading the Data

Begin by loading the data in count.dat:

load count.dat

The 24-by-3 array count contains hourly traffic counts (the rows) at three intersections (the columns) for a single day.

Missing Data

The MATLAB NaN (Not a Number) value is normally used to represent missing data. NaN values allow variables with missing data to maintain their structure - in this case, 24-by-1 vectors with consistent indexing across all three intersections.

Check the data at the third intersection for NaN values using the isnan function:

c3 = count(:,3); % Data at intersection 3
c3NaNCount = sum(isnan(c3))

c3NaNCount = 0
`isnan` returns a logical vector the same size as `c3`, with entries indicating the presence (1) or absence (0) of NaN values for each of the 24 elements in the data. In this case, the logical values sum to 0, so there are no NaN values in the data.

NaN values are introduced into the data in the section on Outliers.

**Outliers**

Outliers are data values that are dramatically different from patterns in the rest of the data. They might be due to measurement error, or they might represent significant features in the data. Identifying outliers, and deciding what to do with them, depends on an understanding of the data and its source.

One common method for identifying outliers is to look for values more than a certain number of standard deviations $\sigma$ from the mean $\mu$. The following code plots a histogram of the data at the third intersection together with lines at $\mu$ and $\mu + \eta \sigma$, for $\eta = 1, 2$:

```matlab
h = histogram(c3,10); % Histogram
N = max(h.Values); % Maximum bin count
mu3 = mean(c3); % Data mean
sigma3 = std(c3); % Data standard deviation
hold on
plot([mu3 mu3],[0 N],'r','LineWidth',2) % Mean
X = repmat(mu3+(1:2)*sigma3,2,1);
Y = repmat([0;N],1,2);
plot(X,Y,'Color',[255 153 51]/255,'LineWidth',2) % Standard deviations
legend('Data','Mean','Stds')
hold off
```
The plot shows that some of the data are more than two standard deviations above the mean. If you identify these data as errors (not features), replace them with NaN values as follows:

```matlab
outliers = (c3 - mu3) > 2*sigma3;
c3m = c3; % Copy c3 to c3m
c3m(outliers) = NaN; % Add NaN values
```

**Smoothing and Filtering**

A time-series plot of the data at the third intersection (with the outlier removed in Outliers) results in the following plot:

```matlab
plot(c3m,'o-')
hold on
```
The NaN value at hour 20 appears as a gap in the plot. This handling of NaN values is typical of MATLAB plotting functions.

Noisy data shows random variations about expected values. You might want to smooth the data to reveal its main features before building a model. Two basic assumptions underlie smoothing:

- The relationship between the predictor (time) and the response (traffic volume) is smooth.
- The smoothing algorithm results in values that are better estimates of expected values because the noise has been reduced.

Apply a simple moving average smoother to the data using the MATLAB convn function:

```matlab
span = 3; % Size of the averaging window
window = ones(span,1)/span;
smoothed_c3m = convn(c3m,window,'same');

h = plot(smoothed_c3m,'ro-');
legend('Data','Smoothed Data')```
The extent of the smoothing is controlled with the variable `span`. The averaging calculation returns `NaN` values whenever the smoothing window includes the `NaN` value in the data, thus increasing the size of the gap in the smoothed data.

The `filter` function is also used for smoothing data:

```matlab
smoothed2_c3m = filter(window,1,c3m);
```

```matlab
delete(h)
plot(smoothed2_c3m,'ro-','DisplayName','Smoothed Data');
```
The smoothed data are shifted from the previous plot. `convn` with the 'same' parameter returns the central part of the convolution, the same length as the data. `filter` returns the initial part of the convolution, the same length as the data. Otherwise, the algorithms are identical.

Smoothing estimates the center of the distribution of response values at each value of the predictor. It invalidates a basic assumption of many fitting algorithms, namely, that the errors at each value of the predictor are independent. Accordingly, you can use smoothed data to identify a model, but avoid using smoothed data to fit a model.

Summarizing Data

This example shows how to summarize data.

Overview

Many MATLAB® functions enable you to summarize the overall location, scale, and shape of a data sample.

One of the advantages of working in MATLAB® is that functions operate on entire arrays of data, not just on single scalar values. The functions are said to be vectorized. Vectorization allows for both efficient problem formulation, using array-based data, and efficient computation, using vectorized statistical functions.
Measures of Location

Summarize the location of a data sample by finding a "typical" value. Common measures of location or "central tendency" are computed by the functions *mean*, *median*, and *mode*:

```
load count.dat
x1 = mean(count)
x1 = 1×3
   32.0000   46.5417   65.5833

x2 = median(count)
x2 = 1×3
   23.5000   36.0000   39.0000

x3 = mode(count)
x3 = 1×3
   11     9     9
```

Like all of its statistical functions, the MATLAB® functions above summarize data across observations (rows) while preserving variables (columns). The functions compute the location of the data at each of the three intersections in a single call.

Measures of Scale

There are many ways to measure the scale or "dispersion" of a data sample. The MATLAB® functions *max*, *min*, *std*, and *var* compute some common measures:

```
dx1 = max(count)-min(count)
dx1 = 1×3
   107   136   250

dx2 = std(count)
dx2 = 1×3
   25.3703   41.4057   68.0281

dx3 = var(count)
dx3 = 1×3
   10^3 ×
   0.6437    1.7144    4.6278
```
Like all of its statistical functions, the MATLAB® functions above summarize data across observations (rows) while preserving variables (columns). The functions compute the scale of the data at each of the three intersections in a single call.

Shape of a Distribution

The shape of a distribution is harder to summarize than its location or scale. The MATLAB® hist function plots a histogram that provides a visual summary:

```matlab
figure
hist(count)
legend('Intersection 1', ...
    'Intersection 2', ...
    'Intersection 3')
```

Parametric models give analytic summaries of distribution shapes. Exponential distributions, with parameter \(\mu \) given by the data mean, are a good choice for the traffic data:

```matlab
c1 = count(:,1); % Data at intersection 1
[bin_counts, bin_locations] = hist(c1);
bin_width = bin_locations(2) - bin_locations(1);
hist_area = (bin_width)*(sum(bin_counts));

figure
hist(c1)
hold on
```
mu1 = mean(c1);
exp_pdf = @(t)(1/mu1)*exp(-t/mu1); % Integrates % to 1

% Methods for fitting general parametric models to data distributions are beyond the scope of this section. Statistics and Machine Learning Toolbox™ software provides functions for computing maximum likelihood estimates of distribution parameters.

Visualizing Data

- “Overview” on page 3-47
- “2-D Scatter Plots” on page 3-48
- “3-D Scatter Plots” on page 3-49
- “Scatter Plot Arrays” on page 3-50
- “Exploring Data in Graphs” on page 3-51

Overview

You can use many MATLAB graph types for visualizing data patterns and trends. Scatter plots, described in this section, help to visualize relationships among the traffic data at different intersections. Data exploration tools let you query and interact with individual data points on graphs.
2-D Scatter Plots

A two-dimensional scatter plot, created with the `scatter` function, shows the relationship between the traffic volume at the first two intersections:

```matlab
load count.dat
c1 = count(:,1); % Data at intersection 1
c2 = count(:,2); % Data at intersection 2
figure
scatter(c1,c2,'filled')
xlabel('Intersection 1')
ylabel('Intersection 2')
```

The covariance, computed by the `cov` function measures the strength of the linear relationship between the two variables (how tightly the data lies along a least-squares line through the scatter):

```matlab
C12 = cov([c1 c2])
C12 = 2x2
10^3 ×
0.6437   0.9802
0.9802   1.7144
```
The results are displayed in a symmetric square matrix, with the covariance of the ith and jth variables in the (i,j)th position. The ith diagonal element is the variance of the ith variable.

Covariances have the disadvantage of depending on the units used to measure the individual variables. You can divide a covariance by the standard deviations of the variables to normalize values between $+1$ and -1. The \texttt{corrcoef} function computes \textit{correlation coefficients}:

$$R_{12} = \text{corrcoef}([c_1 \, c_2])$$

$$R_{12} = \begin{pmatrix} 1.0000 & 0.9331 \\ 0.9331 & 1.0000 \end{pmatrix}$$

$$r_{12} = R_{12}(1,2) \quad \text{% Correlation coefficient}$$

$$r_{12} = 0.9331$$

$$r_{12}^2 = r_{12} \times 2 \quad \text{% Coefficient of determination}$$

$$r_{12}^2 = 0.8707$$

Because it is normalized, the value of the correlation coefficient is readily comparable to values for other pairs of intersections. Its square, the \textit{coefficient of determination}, is the variance about the least-squares line divided by the variance about the mean. Thus, it is the proportion of variation in the response (in this case, the traffic volume at intersection 2) that is eliminated or statistically explained by a least-squares line through the scatter.

\textbf{3-D Scatter Plots}

A three-dimensional scatter plot, created with the \texttt{scatter3} function, shows the relationship between the traffic volume at all three intersections. Use the variables c_1, c_2, and c_3 that you created in the previous step:

$$\text{figure}$$

$$\text{c3 = count(:,3); \% Data at intersection 3}$$

$$\text{scatter3(c1,c2,c3,'filled')}$$

$$\text{xlabel('Intersection 1')}$$

$$\text{ylabel('Intersection 2')}$$

$$\text{zlabel('Intersection 3')}$$
Measure the strength of the linear relationship among the variables in the three-dimensional scatter by computing eigenvalues of the covariance matrix with the `eig` function:

\[
\text{vars} = \text{eig}(\text{cov([c1 c2 c3]))}
\]

\[
\text{vars} = \begin{bmatrix}
10^3 \times \\
0.0442 \\
0.1118 \\
6.8300
\end{bmatrix}
\]

\[
\text{explained} = \frac{\text{max}(\text{vars})}{\text{sum}(\text{vars})}
\]

\[
\text{explained} = 0.9777
\]

The eigenvalues are the variances along the principal components of the data. The variable explained measures the proportion of variation explained by the first principal component, along the axis of the data. Unlike the coefficient of determination for two-dimensional scatters, this measure distinguishes predictor and response variables.

Scatter Plot Arrays

Use the `plotmatrix` function to make comparisons of the relationships between multiple pairs of intersections:
The plot in the \((i,j)\)th position of the array is a scatter with the \(i\)th variable on the vertical axis and the \(j\)th variable on the horizontal axis. The plot in the \(i\)th diagonal position is a histogram of the \(i\)th variable.

Exploring Data in Graphs

Using your mouse, you can pick observations on almost any MATLAB graph with two tools from the figure toolbar:

- Data Cursor
- Data Brushing

These tools each place you in exploratory modes in which you can select data points on graphs to identify their values and create workspace variables to contain specific observations. When you use data brushing, you can also copy, remove or replace the selected observations.

For example, make a scatter plot of the first and third columns of `count`:

```matlab
gload count.dat
scatter(count(:,1),count(:,3))```

Select the Data Cursor Tool and click the rightmost data point. A datatip displaying the point's \(x\) and \(y\) value is placed there.

Datatips display \(x\)-, \(y\)-, and \(z\)- (for three-dimensional plots) coordinates by default. You can drag a datatip from one data point to another to see new values or add additional datatips by right-clicking a datatip and using the context menu. You can also customize the text that datatips display using MATLAB code.

Data brushing is a related feature that lets you highlight one or more observations on a graph by clicking or dragging. To enter data brushing mode, click the left side of the Data Brushing tool on the figure toolbar. Clicking the arrow on the right side of the tool icon drops down a color palette for selecting the color with which to brush observations. This figure shows the same scatter plot as the previous figure, but with all observations beyond one standard deviation of the mean (as identified using the Tools > Data Statistics GUI) brushed in red.

```matlab
scatter(count(:,1),count(:,3))
```
After you brush data observations, you can perform the following operations on them:

- Delete them.
- Replace them with constant values.
- Replace them with NaN values.
- Drag or copy, and paste them to the Command Window.
- Save them as workspace variables.

For example, use the Data Brush context menu or the **Tools > Brushing > Create new variable** option to create a new variable called `count13high`.
A new variable in the workspace results:

```
count13high
count13high =
 61 186
 75 180
 114 257
```

Linked plots, or data linking, is a feature closely related to data brushing. A plot is said to be linked when it has a live connection to the workspace data it depicts. The copies of variables stored in an object's XData, YData, (and, where appropriate, ZData), are automatically updated whenever the workspace variables to which they are linked change or are deleted. This causes the graphs on which they appear to update automatically.

Linking plots to variables lets you track specific observations through different presentations of them. When you brush data points in linked plots, brushing one graph highlights the same observations in every graph that is linked to the same variables.

Data linking establishes immediate, two-way communication between figures and workspace variables, in the same way that the Variable Editor communicates with workspace variables. You create links by activating the Data Linking tool on a figure's toolbar. Activating this tool causes the Linked Plot information bar, displayed in the next figure, to appear at the top of the plot (possibly obscuring its title). You can dismiss the bar (shown in the following figure) without unlinking the plot; it does not print and is not saved with the figure.

The following two graphs depict scatter plot displays of linked data after brushing some observations on the left graph. The common variable, count carries the brush marks to the right figure. Even though the right graph is not in data brushing mode, it displays brush marks because it is linked to its variables.

```
figure
scatter(count(:,1),count(:,2))
xlabel ('count(:,1)')
ylabel ('count(:,2)')
```
The right plot shows that the brushed observations are more linearly related than in the left plot.

Brushed data observations appear highlighted in the brushing color when you display those variables in the Variable Editor, as you can see here:

```matlab
openvar count
```
In the Variable Editor, you can alter any values of linked plot data, and the graphs will reflect your edits. To brush data observation from the Variable Editor, click its Brushing Tool button. If the variable you brush is currently depicted in a linked plot, the observations you brush highlight in the plot, as well as in the Variable Editor. When you brush a variable that is a column in a matrix, the other columns in that row are also brushed. That is, you can brush individual observations in a row or column vector, but all columns in a matrix highlight in any row you brush, not just the observations you click.

Modeling Data

- “Overview” on page 3-56
- “Polynomial Regression” on page 3-57
- “General Linear Regression” on page 3-57

Overview

Parametric models translate an understanding of data relationships into analytic tools with predictive power. Polynomial and sinusoidal models are simple choices for the up and down trends in the traffic data.
Polynomial Regression

Use the polyfit function to estimate coefficients of polynomial models, then use the polyval function to evaluate the model at arbitrary values of the predictor.

The following code fits the traffic data at the third intersection with a polynomial model of degree six:

```matlab
load count.dat
c3 = count(:,3); % Data at intersection 3
tdata = (1:24)';
p_coeffs = polyfit(tdata,c3,6);

figure
plot(c3,'o-')
hold on
tfit = (1:0.01:24)';
yfit = polyval(p_coeffs,tfit);
plot(tfit,yfit,'r-','LineWidth',2)
legend('Data','Polynomial Fit','Location','NW')
```

The model has the advantage of being simple while following the up-and-down trend. The accuracy of its predictive power, however, is questionable, especially at the ends of the data.

General Linear Regression

Assuming that the data are periodic with a 12-hour period and a peak around hour 7, it is reasonable to fit a sinusoidal model of the form:
\[ y = a + b \cos \left( \frac{2\pi}{12}(t - 7) \right) \]

The coefficients \( a \) and \( b \) appear linearly. Use the MATLAB® `mldivide` (backslash) operator to fit general linear models:

```matlab
load count.dat
c3 = count(:,3); % Data at intersection 3
tdata = (1:24)';
X = [ones(size(tdata)) cos((2*pi/12)*(tdata-7))];
s_coeffs = X\c3;
figure
plot(c3,'o-')
hold on
tfit = (1:0.01:24)';
yfit = [ones(size(tfit)) cos((2*pi/12)*(tfit-7))]\s_coeffs;
plot(tfit,yfit,'r-','LineWidth',2)
legend('Data','Sinusoidal Fit','Location','NW')
```

Use the `lscov` function to compute statistics on the fit, such as estimated standard errors of the coefficients and the mean squared error:

```matlab
[s_coeffs, stdx, mse] = lscov(X, c3)
s_coeffs = 2x1
 65.5833
```

3-58
73.2819

\[ \text{stdx} = 2 \times 1 \]

8.9185
12.6127

\[ \text{mse} = 1.9090 \times 10^3 \]

Check the assumption of a 12-hour period in the data with a periodogram, computed using the `fft` function:

\[
\text{Fs} = 1; \quad \% \text{Sample frequency (per hour)} \\
\text{n} = \text{length(c3);} \quad \% \text{Window length} \\
\text{Y} = \text{fft(c3);} \quad \% \text{DFT of data} \\
\text{f} = (0:n-1)*(\text{Fs}/n); \quad \% \text{Frequency range} \\
\text{P} = \text{Y} .* \text{conj(Y)}/n; \quad \% \text{Power of the DFT}
\]

\[
\text{figure} \\
\text{plot(f,P)} \\
\text{xlabel('Frequency')} \\
\text{ylabel('Power')}
\]

\[
\text{predicted}_f = 1/12 \\
\text{predicted}_f = 0.0833
\]
The peak near 0.0833 supports the assumption, although it occurs at a slightly higher frequency. The model can be adjusted accordingly.

**See Also**
convn | corrcor | cov | eig | fft | filter | histogram | isnan | lscov | max | mean | median | min | mldivide | mode | plotmatrix | polyfit | polyval | scatter | scatter3 | std | var
Graphics

- “Basic Plotting Functions” on page 4-2
- “Creating Mesh and Surface Plots” on page 4-15
- “Display Images” on page 4-20
- “Printing Graphics” on page 4-23
- “Working with Graphics Objects” on page 4-25
Basic Plotting Functions

Creating a Plot

The `plot` function has different forms, depending on the input arguments.

- If `y` is a vector, `plot(y)` produces a piecewise linear graph of the elements of `y` versus the index of the elements of `y`.
- If you specify two vectors as arguments, `plot(x,y)` produces a graph of `y` versus `x`.

Use the colon operator to create a vector of `x` values ranging from 0 to `2π`, compute the sine of these values, and plot the result.

```plaintext
x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)
```
Add axis labels and a title. The characters \texttt{pi} in the \texttt{xlabel} function create the symbol π. The \texttt{FontSize} property in the \texttt{title} function increases the size the text used for the title.

\begin{verbatim}
xlabel('x = 0:2\pi')
ylabel('Sine of x')
title('Plot of the Sine Function','FontSize',12)
\end{verbatim}
Plotting Multiple Data Sets in One Graph

Multiple x-y pair arguments create multiple graphs with a single call to `plot`. MATLAB® uses a different color for each line.

For example, these statements plot three related functions of x:

```matlab
x = 0:pi/100:2*pi;
y = sin(x);
y2 = sin(x-.25);
y3 = sin(x-.5);
plot(x,y,x,y2,x,y3)
```
The `legend` function provides an easy way to identify the individual lines:

```matlab
legend('sin(x)', 'sin(x-.25)', 'sin(x-.5)')
```
Specifying Line Styles and Colors

It is possible to specify color, line styles, and markers (such as plus signs or circles) when you plot your data using the `plot` command:

```matlab
plot(x,y,'color_style_marker')
```

`color_style_marker` contains one to four characters (enclosed in single quotes) constructed from a color, a line style, and a marker type. For example,

```matlab
plot(x,y,'r:+')
```

plots the data using a red-dotted line and places a + marker at each data point.

`color_style_marker` is composed of combinations of the following elements.
<table>
<thead>
<tr>
<th>Type</th>
<th>Values</th>
<th>Meanings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>'c'</td>
<td>cyan</td>
</tr>
<tr>
<td></td>
<td>'m'</td>
<td>magenta</td>
</tr>
<tr>
<td></td>
<td>'y'</td>
<td>yellow</td>
</tr>
<tr>
<td></td>
<td>'r'</td>
<td>red</td>
</tr>
<tr>
<td></td>
<td>'g'</td>
<td>green</td>
</tr>
<tr>
<td></td>
<td>'b'</td>
<td>blue</td>
</tr>
<tr>
<td></td>
<td>'w'</td>
<td>white</td>
</tr>
<tr>
<td></td>
<td>'k'</td>
<td>black</td>
</tr>
<tr>
<td>Line style</td>
<td>'-.'</td>
<td>solid</td>
</tr>
<tr>
<td></td>
<td>'--.'</td>
<td>dashed</td>
</tr>
<tr>
<td></td>
<td>':'</td>
<td>dotted</td>
</tr>
<tr>
<td></td>
<td>':-.'</td>
<td>dash-dot</td>
</tr>
<tr>
<td></td>
<td>no character</td>
<td>no line</td>
</tr>
<tr>
<td>Marker type</td>
<td>'+'</td>
<td>plus mark</td>
</tr>
<tr>
<td></td>
<td>'o'</td>
<td>unfilled circle</td>
</tr>
<tr>
<td></td>
<td>'*'</td>
<td>asterisk</td>
</tr>
<tr>
<td></td>
<td>'x'</td>
<td>letter x</td>
</tr>
<tr>
<td></td>
<td>'s'</td>
<td>unfilled square</td>
</tr>
<tr>
<td></td>
<td>'d'</td>
<td>unfilled diamond</td>
</tr>
<tr>
<td></td>
<td>'^'</td>
<td>unfilled upward triangle</td>
</tr>
<tr>
<td></td>
<td>'v'</td>
<td>unfilled downward triangle</td>
</tr>
<tr>
<td></td>
<td>'&gt;'</td>
<td>unfilled right-pointing triangle</td>
</tr>
<tr>
<td></td>
<td>'&lt;'</td>
<td>unfilled left-pointing triangle</td>
</tr>
<tr>
<td></td>
<td>'p'</td>
<td>unfilled pentagram</td>
</tr>
<tr>
<td></td>
<td>'h'</td>
<td>unfilled hexagram</td>
</tr>
<tr>
<td></td>
<td>no character</td>
<td>no marker</td>
</tr>
</tbody>
</table>

**Plotting Lines and Markers**

If you specify a marker type, but not a line style, MATLAB creates the graph using only markers, but no line. For example,

```matlab
plot(x,y,'ks')
```

plots black squares at each data point, but does not connect the markers with a line.

The statement

```matlab
plot(x,y,'r:+')
```

plots a red-dotted line and places plus sign markers at each data point.

**Placing Markers at Every Tenth Data Point**

This example shows how to use fewer data points to plot the markers than you use to plot the lines. This example plots the data twice using a different number of points for the dotted line and marker plots.

```matlab
x1 = 0:pi/100:2*pi;
x2 = 0:pi/10:2*pi;
plot(x1,sin(x1),'r:',x2,sin(x2),'r+')
```
Graphing Imaginary and Complex Data

When you pass complex values as arguments to `plot`, MATLAB ignores the imaginary part, except when you pass a single complex argument. For this special case, the command is a shortcut for a graph of the imaginary part versus the real part. Therefore,

\[ \text{plot}(Z) \]

where \( Z \) is a complex vector or matrix, is equivalent to

\[ \text{plot}(\text{real}(Z), \text{imag}(Z)) \]

The following statements draw a 20-sided polygon with little circles at the vertices.

```matlab
% t = 0:pi/10:2*pi;
plot(exp(1i*t),'-o')
axis equal
```
The axis equal command makes the individual tick-mark increments on the x- and y-axes the same length, which makes this plot more circular in appearance.

**Adding Plots to an Existing Graph**

The hold command enables you to add plots to an existing graph. When you type,

```matlab
hold on
```

MATLAB does not replace the existing graph when you issue another plotting command. Instead, MATLAB combines the new graph with the current graph.

For example, these statements first create a surface plot of the `peaks` function, then superimpose a contour plot of the same function.

```matlab
[x,y,z] = peaks;
% Create surface plot
surf(x,y,z)
% Remove edge lines a smooth colors
shading interp
% Hold the current graph
hold on
% Add the contour graph to the pcolor graph
contour3(x,y,z,20,'k')
% Return to default
hold off
```
**Figure Windows**

Plotting functions automatically open a new figure window if there are no figure windows already created. If there are multiple figure windows open, MATLAB uses the one that is designated as the “current figure” (usually, the last figure used).

To make an existing figure window the current figure, you can click the mouse while the pointer is in that window or you can type,

```
figure(n)
```

where \( n \) is the number in the figure title bar.

To open a new figure window and make it the current figure, type

```
figure
```

**Clearing the Figure for a New Plot**

When a figure already exists, most plotting commands clear the axes and use this figure to create the new plot. However, these commands do not reset figure properties, such as the background color or the colormap. If you have set any figure properties in the previous plot, you can use the `clf` command with the `reset` option,

```
clf reset
```

before creating your new plot to restore the figure's properties to their defaults.
Displaying Multiple Plots in One Figure

The subplot command enables you to display multiple plots in the same window or print them on the same piece of paper. Typing

\[
\text{subplot}(m,n,p)
\]

partitions the figure window into an \( m \)-by-\( n \) matrix of small subplots and selects the \( p \)th subplot for the current plot. The plots are numbered along the first row of the figure window, then the second row, and so on. For example, these statements plot data in three subregions of the figure window.

\[
x = 0:pi/20:2*pi;
\]
\[
\text{subplot}(3,1,1); \text{plot}(\sin(x))
\]
\[
\text{subplot}(3,1,2); \text{plot}(\cos(x))
\]
\[
\text{subplot}(3,1,3); \text{plot}(\sin(x).*\cos(x))
\]

Controlling the Axes

The axis command provides a number of options for setting the scaling, orientation, and aspect ratio of graphs.

Automatic Axis Limits and Tick Marks

By default, MATLAB finds the maxima and minima of the data and chooses the axis limits to span this range. MATLAB selects the limits and axis tick mark values to produce a graph that clearly displays the data. However, you can set your own limits using the axis or xlim, ylim, and zlim functions.


**Note** Changing the limits of one axis can cause other limits to change to better represent the data. To disable automatic limit setting, enter the `axis manual` command.

### Setting Axis Limits

The `axis` command enables you to specify your own limits:

```matlab
axis([xmin xmax ymin ymax])
```

or for three-dimensional graphs,

```matlab
axis([xmin xmax ymin ymax zmin zmax])
```

Use the command

```matlab
axis auto
```

to enable automatic limit selection again.

### Setting the Axis Aspect Ratio

The `axis` command also enables you to specify a number of predefined modes. For example,

```matlab
axis square
```

makes the x-axis and y-axis the same length.

```matlab
axis equal
```

makes the individual tick mark increments on the x-axes and y-axes the same length. This means

```matlab
plot(exp(1i*(0:pi/10:2*pi)))
```

followed by either `axis square` or `axis equal` turns the oval into a proper circle:

```matlab
axis auto normal
```

returns the axis scaling to its default automatic mode.

### Setting Axis Visibility

You can use the `axis` command to make the axis visible or invisible.

```matlab
axis on
```

makes the axes visible. This is the default.

```matlab
axis off
```

makes the axes invisible.

### Setting Grid Lines

The `grid` command toggles grid lines on and off. The statement

```matlab
grid on
```

turns the grid lines on, and
grid off

turns them back off again.

**Adding Axis Labels and Titles**

This example show how to create a graph and enhance its presentation:

- Define the x- and y-axis limits (axis)
- Label the x- and y-axes (xlabel, ylabel)
- Add a title (title)
- Add a text note on the graph (text)

Produce mathematical symbols using LaTeX notation.

```matlab
t = -pi:pi/100:pi;
y = sin(t);
plot(t,y)

axis([-pi pi -1 1])
xlabel('-\pi \leq \itt \leq \pi')
ylabel('sin(t)')
title('Graph of the sine function')
text(0.5,-1/3,'\it{Note the odd symmetry.}')
```

For information on placing arrows, boxes, and circles in your graph, see the `annotation` function.
Saving Figures

Save a figure by selecting **Save** from the **File** menu. This writes the figure to a file, including property data, its menus, uicontrols, and all annotations (i.e., the entire window). If you have not saved the figure before, the **Save As** dialog displays. This dialog box provides options to save the figure as a .fig file or export it to a graphics format.

If you have previously saved the figure, using **Save** again saves the figure “silently,” without displaying the **Save As** dialog.

To save a figure using a standard graphics format for use with other applications, such as TIFF or JPG, select **Save As** (or **Export Setup**, if you want additional control) from the **File** menu.

**Note** Whenever you specify a format for saving a figure, that file format is used again the next time you save that figure or a new one. If you do not want to save in the previously used format, use **Save As** and be sure to set the **Save as type** drop-down menu to the kind of file you want to write.

You can also save from the command line:

- Use the `savefig` function to save a figure and the graphics objects it contains as a .fig file.
- Use the `saveas` command, including any options to save the figure in a variety of formats.

Loading a Figure

You can load figures into MATLAB using these functions:

- Use the `openfig` function to load figures saved as .fig files.
- Use the `imread` function to read standard graphics files (including save figures) into MATLAB.

Generating MATLAB Code to Recreate a Figure

You can generate MATLAB code that recreates a figure and the graph it contains by selecting **Generate code** from the figure **File** menu. This option is particularly useful if you have developed a graph using plotting tools and want to create a similar graph using the same or different data.

Saving Workspace Data

You can save the variables in your workspace by selecting **Save Workspace As** from the figure **File** menu. You can reload saved data using the **Import Data** item in the figure **File** menu. MATLAB supports a variety of data file formats, including MATLAB data files, which have a .mat extension.
Creating Mesh and Surface Plots

In this section...

“About Mesh and Surface Plots” on page 4-15
“Visualizing Functions of Two Variables” on page 4-15

About Mesh and Surface Plots

MATLAB defines a surface by the $z$-coordinates of points above a grid in the $x$-$y$ plane, using straight lines to connect adjacent points. The \texttt{mesh} and \texttt{surf} functions display surfaces in three dimensions.

- \texttt{mesh} produces wireframe surfaces that color only the lines connecting the defining points.
- \texttt{surf} displays both the connecting lines and the faces of the surface in color.

MATLAB colors surfaces by mapping $z$-data values to indexes into the figure colormap.

Visualizing Functions of Two Variables

To display a function of two variables, $z = f(x,y)$,

1. Generate $X$ and $Y$ matrices consisting of repeated rows and columns, respectively, over the domain of the function.
2. Use $X$ and $Y$ to evaluate and graph the function.

The \texttt{meshgrid} function transforms the domain specified by a single vector or two vectors $x$ and $y$ into matrices $X$ and $Y$ for use in evaluating functions of two variables. The rows of $X$ are copies of the vector $x$ and the columns of $Y$ are copies of the vector $y$.

Graphing the sinc Function

This example shows how to evaluate and graph the two-dimensional sinc function, $\sin(R)/R$, between the $x$ and $y$ directions. $R$ is the distance from the origin, which is at the center of the matrix. Adding \texttt{eps} (a very small value) prevents a hole in the mesh at the point where $R = 0$.

\begin{verbatim}
[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
mesh(X,Y,Z)
\end{verbatim}
By default, MATLAB uses the current colormap to color the mesh.

**Colored Surface Plots**

This example shows how to graph the sinc function as a surface plot, specify a colormap, and add a color bar to show the mapping of data to color.

A surface plot is similar to a mesh plot except that the rectangular faces of the surface are colored. The color of each face is determined by the values of $Z$ and the colormap (a colormap is an ordered list of colors).

```
[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
surf(X,Y,Z)
colormap hsv
colorbar
```
Making Surfaces Transparent

This example shows how you can make the faces of a surface transparent to a varying degree. Transparency (referred to as the alpha value) can be specified for the whole object or can be based on an alphamap, which behaves similarly to colormaps.

```
[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
surf(X,Y,Z)
colormap hsv
alpha(.4)
```
MATLAB displays a surface with a face alpha value of 0.4. Alpha values range from 0 (completely transparent) to 1 (not transparent).

**Illuminating Surface Plots with Lights**

This example shows the same surface as the previous examples, but colors it red and removes the mesh lines. A light object is then added to the left of the "camera" (the camera is the location in space from where you are viewing the surface).

```matlab
[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
surf(X,Y,Z,'FaceColor','red','EdgeColor','none')
camlight left;
lighting phong
```
Lighting is the technique of illuminating an object with a directional light source. In certain cases, this technique can make subtle differences in surface shape easier to see. Lighting can also be used to add realism to three-dimensional graphs.

**Manipulating the Surface**

The figure toolbar and the camera toolbar provide ways to explore three-dimensional graphics interactively. Display the camera toolbar by selecting Camera Toolbar from the figure View menu.

The following picture shows both toolbars with the **Rotate 3D** tool selected.

These tools enable you to move the camera around the surface object, zoom, add lighting, and perform other viewing operations without issuing commands.
Display Images

In this section...

“Image Data” on page 4-20
“Reading and Writing Images” on page 4-21

Image Data

You can display a 2-D numeric array as an image. In images, the array elements determine brightness or color of the images. For example, load an image array and its colormap:

```
load durer
whos
```

```
Name Size Bytes Class
X 648x509 2638656 double array
caption 2x28 112 char array
map 128x3 3072 double array
```

loads the file durer.mat, adding three variables to the workspace. The array X is a 648-by-509 matrix and map is a 128-by-3 array that is the colormap for this image.

MAT-files, such as durer.mat, are binary files that provide a way to save MATLAB variables.

The elements of X are integers between 1 and 128, which serve as indices into the colormap, map. To display the image, use the imshow function:

```
imshow(X,map)
```

reproduces Albrecht Dürer's etching.
Reading and Writing Images

You can read standard image files (TIFF, JPEG, PNG, and so on, using the imread function. The type of data returned by imread depends on the type of image you are reading.
You can write MATLAB data to a variety of standard image formats using the `imwrite` function.
Printing Graphics

Overview of Printing

You can print a MATLAB figure directly on a printer connected to your computer or you can export the figure to one of the standard graphics file formats that MATLAB supports. There are two ways to print and export figures:

- Use the Print, Print Preview, or Export Setup GUI options under the File menu.
- Use the print command to print or export the figure from the command line.

The print command provides greater control over drivers and file formats. The Print Preview dialog box gives you greater control over figure size, proportions, placement, and page headers.

Printing from the File Menu

There are two menu options under the File menu that pertain to printing:

- The Print Preview option displays a dialog box that lets you lay out and style figures for printing while previewing the output page, and from which you can print the figure. It includes options that formerly were part of the Page Setup dialog box.
- The Print option displays a dialog box that lets you choose a printer, select standard printing options, and print the figure.

Use Print Preview to determine whether the printed output is what you want. Click the Print Preview dialog box Help button to display information on how to set up the page.

Exporting the Figure to a Graphics File

The Export Setup option in the File menu opens a GUI that enables you to set graphic characteristics, such as text size, font, and style, for figures you save as graphics files. The Export Setup dialog lets you define and apply templates to customize and standardize output. After setup, you can export the figure to a number of standard graphics file formats, such as EPS, PNG, and TIFF.

Using the Print Command

The print command provides more flexibility in the type of output sent to the printer and allows you to control printing from function and script files. The result can be sent directly to your default printer or stored in a specified output file. A wide variety of output formats is available, including TIFF, JPEG, and PNG.

For example, this statement saves the contents of the current figure window as a PNG graphic in the file called magicsquare.png.
print -dpng magicsquare.png

To save the figure at the same size as the figure on the screen, use these statements:

\texttt{set(gcf,'PaperPositionMode','auto')}
\texttt{print -dpng -r0 magicsquare.png}

To save the same figure as a TIFF file with a resolution of 200 dpi, use the following command:

\texttt{print -dtiff -r200 magicsquare.tif}

If you type \texttt{print} on the command line

\texttt{print}

the current figure prints on your default printer.
Working with Graphics Objects

In this section...

“Graphics Objects” on page 4-25
“Setting Object Properties” on page 4-27
“Functions for Working with Objects” on page 4-28
“Passing Arguments” on page 4-29
“Finding the Handles ofExisting Objects” on page 4-30

Graphics Objects

Graphics objects are the basic elements used to display graphs. These objects are organized into a hierarchy, as shown by the following diagram.

![Diagram of the hierarchy of graphics objects](image-url)
When you call a plotting function, MATLAB creates the graph using various graphics objects, such as a figure window, axes, lines, text, and so on. Each object has a fixed set of properties, which you can use to control the behavior and appearance of the graph.

For example, the following statement creates a bar graph from the data in the variable $y$ and sets properties that how the bars look:

```matlab
y = [75 91 105 123.5 131 150 179 203 226 249 281.5];
bar(y,'FaceColor','green','EdgeColor','black','LineWidth',1.5)
```

**Common Graphics Objects**

When you call a function to create a graph, MATLAB creates a hierarchy of graphics objects. For example, calling the `plot` function creates the following graphics objects:

- **Figure** — Window that contains axes, toolbars, menus, and so on.
- **Axes** — Coordinate system that contains the object representing the data.
- **Line** — Lines that represent the value of data passed to the `plot` function.
- **Text** — Labels for axes tick marks and optional titles and annotations.

Different types of graphs use different objects to represent data. Because there are many kinds of graphs, there are many types of data objects. Some are general purpose, such as lines and rectangles and some are highly specialized, such as errorbars, colorbars, and legends.

**Access Object Properties**

Plotting functions can return the objects used to create the graph. For example, the following statements create a graph and return the line object created by the `plot` function:

```matlab
x = 1:10;
y = x.^3;
h = plot(x,y);
```

Use `h` to set the properties of the line object. For example, set its `Color` property.

```matlab
h.Color = 'red';
```

You can also specify the line properties when you call the plotting function.

```matlab
h = plot(x,y,'Color','red');
```

You can query the line properties to see the current value:

```matlab
h.LineWidth
ans =
0.5000
```

**Finding the Properties of an Object**

To view the properties of an object, type:

```matlab
get(h)
```

MATLAB returns a list of the object’s properties with the current values.

To view an object’s properties with information about possible values, type:
Setting Object Properties

You can set multiple properties at once using the `set` function.

**Setting Properties of Existing Objects**

To set the same property to the same value on multiple objects, use the `set` function.

For example, the following statements plot a 5-by-5 matrix (creating five line objects, one per column), and then set the `Marker` property to square and the `MarkerFaceColor` property to green.

```matlab
y = magic(5);
h = plot(y);
set(h, 'Marker', 's', 'MarkerFaceColor', 'g')
```

In this case, `h` is a vector containing five handles, one for each of the five lines in the graph. The `set` statement sets the `Marker` and `MarkerFaceColor` properties of all lines to the same value.

To set a property value on one object, index into the handle array:

```matlab
h(1).LineWidth = 2;
```

**Setting Multiple Property Values**

If you want to set the properties of each line to a different value, you can use cell arrays to store all the data and pass it to the `set` command. For example, create a plot and save the line handles:

```matlab
figure
y = magic(5);
h = plot(y);
```

Suppose you want to add different markers to each lines and color the marker's face color the same color as the line. You need to define two cell arrays—one containing the property names and the other containing the desired values of the properties.

The `prop_name` cell array contains two elements:

```matlab
prop_name(1) = {'Marker'};
prop_name(2) = {'MarkerFaceColor'};
```

The `prop_values` cell array contains 10 values: five values for the `Marker` property and five values for the `MarkerFaceColor` property. Notice that `prop_values` is a two-dimensional cell array. The first dimension indicates which handle in `h` the values apply to and the second dimension indicates which property the value is assigned to:

```matlab
prop_values(1,1) = {'s'};
prop_values(1,2) = {h(1).Color};
prop_values(2,1) = {'d'};
prop_values(2,2) = {h(2).Color};
prop_values(3,1) = {'o'};
prop_values(3,2) = {h(3).Color};
prop_values(4,1) = {'p'};
prop_values(4,2) = {h(4).Color};
prop_values(5,1) = {'h'};
prop_values(5,2) = {h(5).Color};
```
The MarkerFaceColor is always assigned the value of the corresponding line's color (obtained by getting the line Color property).

After defining the cell arrays, call `set` to specify the new property values:

```
set(h,prop_name,prop_values)
```

---

**Functions for Working with Objects**

This table lists functions commonly used when working with objects.

<table>
<thead>
<tr>
<th>Function</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>allchild</td>
<td>Find all children of specified objects.</td>
</tr>
<tr>
<td>ancestor</td>
<td>Find ancestor of graphics object.</td>
</tr>
<tr>
<td>copyobj</td>
<td>Copy graphics object.</td>
</tr>
<tr>
<td>delete</td>
<td>Delete an object.</td>
</tr>
<tr>
<td>findall</td>
<td>Find all graphics objects (including hidden handles).</td>
</tr>
<tr>
<td>findobj</td>
<td>Find the handles of objects having specified property values.</td>
</tr>
<tr>
<td>gca</td>
<td>Return the handle of the current axes.</td>
</tr>
<tr>
<td>gcf</td>
<td>Return the handle of the current figure.</td>
</tr>
<tr>
<td>gco</td>
<td>Return the handle of the current object.</td>
</tr>
</tbody>
</table>
### Function

<table>
<thead>
<tr>
<th>Function</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>get</td>
<td>Query the values of an object's properties.</td>
</tr>
<tr>
<td>ishandle</td>
<td>True if the value is a valid object handle.</td>
</tr>
<tr>
<td>set</td>
<td>Set the values of an object's properties.</td>
</tr>
</tbody>
</table>

### Passing Arguments

You can define specialized plotting functions to simplify the creation of customized graphs. By defining a function, you can pass arguments like MATLAB plotting functions.

The following example shows a MATLAB function that evaluates a mathematical expression over the range specified in the input argument \( x \), and then plots the results. A second call to the `plot` function plots the mean value of the results as a red line.

The function modifies the y-axis ticks based on the values calculated. Axis labels and a title finish the custom graph.

```matlab
function plotFunc(x)
 y = 1.5*cos(x) + 6*exp(-.1*x) + exp(.07*x).*sin(3*x);
 ym = mean(y);
 hfig = figure('Name','Function and Mean');
 hax = axes('Parent',hfig);
 plot(hax,x,y)
 hold on
 plot(hax,[min(x) max(x)],[ym ym],'Color','red')
 hold off
 ylab = hax.YTick;
 new_ylab = sort([ylab, ym]);
 hax.YTick = new_ylab;
 title ('y = 1.5cos(x) + 6e^{-0.1x} + e^{0.07x}sin(3x)')
 xlabel('X Axis')
 ylabel('Y Axis')
end
```

Define a value for the input argument and call the function.

```matlab
x = -10:.005:40;
plotFunc(x)
```
Finding the Handles of Existing Objects

The `findobj` function enables you to obtain the handles of graphics objects by searching for objects with particular property values. With `findobj` you can specify the values of any combination of properties, which makes it easy to pick one object out of many. `findobj` also recognizes regular expressions.

Finding All Objects of a Certain Type

Because all objects have a `Type` property that identifies the type of object, you can find the handles of all occurrences of a particular type of object. For example,

```matlab
h = findobj('Type','patch');
```

finds the handles of all patch objects.

Finding Objects with a Particular Property

You can specify multiple properties to narrow the search. For example,

```matlab
plot(rand(5),'.r')
h = findobj('Type','line','Color','r','LineStyle',':');
```

finds the handles of all red dotted lines.

```matlab
h =
```
Limiting the Scope of the Search

You can specify the starting point in the object hierarchy by passing the handle of the starting figure or axes as the first argument. For example,

```matlab
h = findobj(gca,'Type','text','String','\pi/2');
```

finds \( \pi/2 \) only within the current axes.
Programming

- “Control Flow” on page 5-2
- “Scripts and Functions” on page 5-8
Control Flow

Conditional Control — if, else, switch

Conditional statements enable you to select at run time which block of code to execute. The simplest conditional statement is an if statement. For example:

```matlab
% Generate a random number
a = randi(100, 1);

% If it is even, divide by 2
if rem(a, 2) == 0
disp('a is even')
b = a/2;
end
```

if statements can include alternate choices, using the optional keywords elseif or else. For example:

```matlab
a = randi(100, 1);

if a < 30
disp('small')
elseif a < 80
disp('medium')
else
disp('large')
end
```

Alternatively, when you want to test for equality against a set of known values, use a switch statement. For example:

```matlab
[dayNum, dayString] = weekday(date, 'long', 'en_US');

switch dayString
 case 'Monday'
disp('Start of the work week')
 case 'Tuesday'
disp('Day 2')
 case 'Wednesday'
disp('Day 3')
 case 'Thursday'
disp('Day 4')
 case 'Friday'
disp('Last day of the work week')
otherwise
end
```
disp('Weekend!')
end

For both if and switch, MATLAB executes the code corresponding to the first true condition, and then exits the code block. Each conditional statement requires the end keyword.

In general, when you have many possible discrete, known values, switch statements are easier to read than if statements. However, you cannot test for inequality between switch and case values. For example, you cannot implement this type of condition with a switch:

```matlab
yourNumber = input('Enter a number: ');
if yourNumber < 0
 disp('Negative')
elseif yourNumber > 0
 disp('Positive')
else
 disp('Zero')
end
```

**Array Comparisons in Conditional Statements**

It is important to understand how relational operators and if statements work with matrices. When you want to check for equality between two variables, you might use

```matlab
if A == B, ...
```

This is valid MATLAB code, and does what you expect when A and B are scalars. But when A and B are matrices, A == B does not test if they are equal, it tests where they are equal; the result is another matrix of 0s and 1s showing element-by-element equality.

```matlab
A = magic(4);
B = A;
B(1,1) = 0;
A == B
```

```matlab
ans =
4×4 logical array
0 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
```

The proper way to check for equality between two variables is to use the isequal function:

```matlab
if isequal(A, B), ...
```

isequal returns a scalar logical value of 1 (representing true) or 0 (false), instead of a matrix, as the expression to be evaluated by the if function. Using the A and B matrices from above, you get

```matlab
isequal(A,B)
```

```matlab
ans =
logical
```
Here is another example to emphasize this point. If \( A \) and \( B \) are scalars, the following program will never reach the “unexpected situation”. But for most pairs of matrices, including our magic squares with interchanged columns, none of the matrix conditions \( A > B \), \( A < B \), or \( A == B \) is true for all elements and so the else clause is executed:

```matlab
if A > B
 'greater'
elseif A < B
 'less'
elseif A == B
 'equal'
else
 error('Unexpected situation')
end
```

Several functions are helpful for reducing the results of matrix comparisons to scalar conditions for use with if, including

- `isequal`
- `isempty`
- `all`
- `any`

### Loop Control — for, while, continue, break

This section covers those MATLAB functions that provide control over program loops.

#### for

The for loop repeats a group of statements a fixed, predetermined number of times. A matching end delimits the statements:

```matlab
for n = 3:32
 r(n) = rank(magic(n));
end
```

The semicolon terminating the inner statement suppresses repeated printing, and the \( r \) after the loop displays the final result.

It is a good idea to indent the loops for readability, especially when they are nested:

```matlab
for i = 1:m
 for j = 1:n
 H(i,j) = 1/(i+j);
 end
end
```

#### while

The while loop repeats a group of statements an indefinite number of times under control of a logical condition. A matching end delimits the statements.
Here is a complete program, illustrating while, if, else, and end, that uses interval bisection to find a zero of a polynomial:

```plaintext
a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b
 x = (a+b)/2;
 fx = x^3-2*x-5;
 if sign(fx) == sign(fa)
 a = x; fa = fx;
 else
 b = x; fb = fx;
 end
end
x
```

The result is a root of the polynomial $x^3 - 2x - 5$, namely

```
x =
 2.09455148154233
```

The cautions involving matrix comparisons that are discussed in the section on the if statement also apply to the while statement.

**continue**

The continue statement passes control to the next iteration of the for loop or while loop in which it appears, skipping any remaining statements in the body of the loop. The same holds true for continue statements in nested loops. That is, execution continues at the beginning of the loop in which the continue statement was encountered.

The example below shows a continue loop that counts the lines of code in the file magic.m, skipping all blank lines and comments. A continue statement is used to advance to the next line in magic.m without incrementing the count whenever a blank line or comment line is encountered:

```plaintext
fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)
 line = fgetl(fid);
 if isempty(line) || strncmp(line,'%',1) || ~ischar(line)
 continue
 end
 count = count + 1;
end
fprintf('%d lines\n',count);
fclose(fid);
```

**break**

The break statement lets you exit early from a for loop or while loop. In nested loops, break exits from the innermost loop only.

Here is an improvement on the example from the previous section. Why is this use of break a good idea?

```plaintext
a = 0; fa = -Inf;
b = 3; fb = Inf;
```
while b-a > eps*b 
  x = (a+b)/2; 
  fx = x^3 - 2*x - 5; 
  if fx == 0 
    break 
  elseif sign(fx) == sign(fa) 
    a = x; fa = fx; 
  else 
    b = x; fb = fx; 
  end 
end

x

**Program Termination — return**

This section covers the MATLAB `return` function that enables you to terminate your program before it runs to completion.

`return`

`return` terminates the current sequence of commands and returns control to the invoking function or to the keyboard. `return` is also used to terminate `keyboard` mode. A called function normally transfers control to the function that invoked it when it reaches the end of the function. You can insert a `return` statement within the called function to force an early termination and to transfer control to the invoking function.

**Vectorization**

One way to make your MATLAB programs run faster is to vectorize the algorithms you use in constructing the programs. Where other programming languages might use `for` loops or `DO` loops, MATLAB can use vector or matrix operations. A simple example involves creating a table of logarithms:

```matlab
x = 0.01;
y = log10(x);
for k = 1:999
 x(k+1) = x(k) + 0.01;
y(k+1) = log10(x(k+1));
end
```

A vectorized version of the same code is

```matlab
x = .01:.01:10;
y = log10(x);
```

For more complicated code, vectorization options are not always so obvious.

**Preallocation**

If you cannot vectorize a piece of code, you can make your `for` loops go faster by preallocating any vectors or arrays in which output results are stored. For example, this code uses the function `zeros` to preallocate the vector created in the `for` loop. This makes the `for` loop execute significantly faster:
\[ r = \text{zeros}(32,1); \]
\[ \text{for } n = 1:32 \]
\[ \quad r(n) = \text{rank}(\text{magic}(n)); \]
\[ \text{end} \]

Without the preallocation in the previous example, the MATLAB interpreter enlarges the \( r \) vector by one element each time through the loop. Vector preallocation eliminates this step and results in faster execution.
Scripts and Functions

In this section...

"Overview" on page 5-8
"Scripts" on page 5-8
"Functions" on page 5-9
"Types of Functions" on page 5-10
"Global Variables" on page 5-12
"Command vs. Function Syntax" on page 5-12

Overview

MATLAB provides a powerful programming language, as well as an interactive computational environment. You can enter commands from the language one at a time at the MATLAB command line, or you can write a series of commands to a file that you then execute as you would any MATLAB function. Use the MATLAB Editor or any other text editor to create your own function files. Call these functions as you would any other MATLAB function or command.

There are two kinds of program files:

• Scripts, which do not accept input arguments or return output arguments. They operate on data in the workspace.

• Functions, which can accept input arguments and return output arguments. Internal variables are local to the function.

If you are a new MATLAB programmer, just create the program files that you want to try out in the current folder. As you develop more of your own files, you will want to organize them into other folders and personal toolboxes that you can add to your MATLAB search path.

If you duplicate function names, MATLAB executes the one that occurs first in the search path.

To view the contents of a program file, for example, myfunction.m, use type myfunction

Scripts

When you invoke a script, MATLAB simply executes the commands found in the file. Scripts can operate on existing data in the workspace, or they can create new data on which to operate. Although scripts do not return output arguments, any variables that they create remain in the workspace, to be used in subsequent computations. In addition, scripts can produce graphical output using functions like plot.

For example, create a file called magicrank.m that contains these MATLAB commands:

% Investigate the rank of magic squares
r = zeros(1,32);
for n = 3:32
    r(n) = rank(magic(n));
end
bar(r)
Typing the statement

```
magicrank
```

causes MATLAB to execute the commands, compute the rank of the first 30 magic squares, and plot a bar graph of the result. After execution of the file is complete, the variables \( n \) and \( r \) remain in the workspace.

---

**Functions**

Functions are files that can accept input arguments and return output arguments. The names of the file and of the function should be the same. Functions operate on variables within their own workspace, separate from the workspace you access at the MATLAB command prompt.

A good example is provided by `rank`. The file `rank.m` is available in the folder `toolbox/matlab/matfun`.

You can see the file with

```
type rank
```

Here is the file:

```matlab
function r = rank(A,tol)
% RANK Matrix rank.
% RANK(A) provides an estimate of the number of linearly
```
% independent rows or columns of a matrix A.
% RANK(A,tol) is the number of singular values of A
% that are larger than tol.
% RANK(A) uses the default tol = max(size(A)) * norm(A) * eps.

s = svd(A);
if nargin==1
    tol = max(max(size(A))') * max(s) * eps;
end
r = sum(s > tol);

The first line of a function starts with the keyword function. It gives the function name and order of arguments. In this case, there are up to two input arguments and one output argument.

The next several lines, up to the first blank or executable line, are comment lines that provide the help text. These lines are printed when you type

help rank

The first line of the help text is the H1 line, which MATLAB displays when you use the lookfor command or request help on a folder.

The rest of the file is the executable MATLAB code defining the function. The variable s introduced in the body of the function, as well as the variables on the first line, r, A and tol, are all local to the function; they are separate from any variables in the MATLAB workspace.

This example illustrates one aspect of MATLAB functions that is not ordinarily found in other programming languages—a variable number of arguments. The rank function can be used in several different ways:

rank(A)
r = rank(A)
r = rank(A,1.e-6)

Many functions work this way. If no output argument is supplied, the result is stored in ans. If the second input argument is not supplied, the function computes a default value. Within the body of the function, two quantities named nargin and nargout are available that tell you the number of input and output arguments involved in each particular use of the function. The rank function uses nargin, but does not need to use nargout.

**Types of Functions**

MATLAB offers several different types of functions to use in your programming.

**Anonymous Functions**

An anonymous function is a simple form of the MATLAB function that is defined within a single MATLAB statement. It consists of a single MATLAB expression and any number of input and output arguments. You can define an anonymous function right at the MATLAB command line, or within a function or script. This gives you a quick means of creating simple functions without having to create a file for them each time.

The syntax for creating an anonymous function from an expression is

f = @(arglist)expression
The statement below creates an anonymous function that finds the square of a number. When you call this function, MATLAB assigns the value you pass in to variable \( x \), and then uses \( x \) in the equation \( x.^2 \):

\[
sqr = @(x) x.^2;
\]

To execute the \( sqr \) function, type

\[
a = sqr(5)
a = 25
\]

**Main Functions and Local Functions**

Any function that is not anonymous must be defined within a file. Each such function file contains a required *main function* that appears first, and any number of *local functions* that can follow the main function. Main functions have a wider scope than local functions. That is, main functions can be called from outside of the file that defines them (for example, from the MATLAB command line or from functions in other files) while local functions cannot. Local functions are visible only to the main function and other local functions within their own file.

The *rank* function shown in the section on “Functions” on page 5-9 is an example of a main function.

**Private Functions**

A private function is a type of main function. Its unique characteristic is that it is visible only to a limited group of other functions. This type of function can be useful if you want to limit access to a function, or when you choose not to expose the implementation of a function.

Private functions reside in subfolders with the special name *private*. They are visible only to functions in the parent folder. For example, assume the folder *newmath* is on the MATLAB search path. A subfolder of *newmath* called *private* can contain functions that only the functions in *newmath* can call.

Because private functions are invisible outside the parent folder, they can use the same names as functions in other folders. This is useful if you want to create your own version of a particular function while retaining the original in another folder. Because MATLAB looks for private functions before standard functions, it will find a private function named *test.m* before a nonprivate file named *test.m*.

**Nested Functions**

You can define functions within the body of another function. These are said to be *nested* within the outer function. A nested function contains any or all of the components of any other function. In this example, function \( B \) is nested in function \( A \):

\[
function x = A(p1, p2)
...
B(p2)
    function y = B(p3)
    ...
end
...
end
\]

Like other functions, a nested function has its own workspace where variables used by the function are stored. But it also has access to the workspaces of all functions in which it is nested. So, for
example, a variable that has a value assigned to it by the main function can be read or overwritten by a function nested at any level within the main function. Similarly, a variable that is assigned in a nested function can be read or overwritten by any of the functions containing that function.

Global Variables

If you want more than one function to share a single copy of a variable, simply declare the variable as global in all the functions. Do the same thing at the command line if you want the base workspace to access the variable. The global declaration must occur before the variable is actually used in a function. Although it is not required, using capital letters for the names of global variables helps distinguish them from other variables. For example, create a new function in a file called `falling.m`:

```matlab
function h = falling(t)
global GRAVITY
h = 1/2*GRAVITY*t.^2;
```

Then interactively enter the statements

```matlab
global GRAVITY
GRAVITY = 32;
y = falling((0:.1:5)');
```

The two global statements make the value assigned to `GRAVITY` at the command prompt available inside the function. You can then modify `GRAVITY` interactively and obtain new solutions without editing any files.

Command vs. Function Syntax

You can write MATLAB functions that accept character arguments without the parentheses and quotes. That is, MATLAB interprets `foo a b c` as `foo('a','b','c')`.

However, when you use the unquoted command form, MATLAB cannot return output arguments. For example,

```matlab
legend apples oranges
```
creates a legend on a plot using `apples` and `oranges` as labels. If you want the `legend` command to return its output arguments, then you must use the quoted form:

```matlab
[legh,objh] = legend('apples','oranges');
```

In addition, you must use the quoted form if any of the arguments is not a character vector.

**Caution** While the unquoted command syntax is convenient, in some cases it can be used incorrectly without causing MATLAB to generate an error.
Constructing Character Arguments in Code

The quoted function form enables you to construct character arguments within the code. The following example processes multiple data files, August1.dat, August2.dat, and so on. It uses the function `int2str`, which converts an integer to a character, to build the file name:

```matlab
for d = 1:31
 s = ['August' int2str(d) '.dat'];
 load(s)
 % Code to process the contents of the d-th file
end
```