transformPointsForward

Apply forward geometric transformation

Syntax

``[x,y] = transformPointsForward(tform,u,v)``
``[x,y,z] = transformPointsForward(tform,u,v,w)``
``X = transformPointsForward(tform,U)``

Description

example

````[x,y] = transformPointsForward(tform,u,v)` applies the forward transformation of 2-D geometric transformation `tform` to the points specified by coordinates `u` and `v`.```
````[x,y,z] = transformPointsForward(tform,u,v,w)` applies the forward transformation of 3-D geometric transformation `tform` to the points specified by coordinates `u`, `v`, and `w`.```
````X = transformPointsForward(tform,U)` applies the forward transformation of `tform` to the input coordinate matrix `U` and returns the coordinate matrix `X`. `transformPointsForward` maps the kth point `U`(k,`:`) to the point `X`(k,`:`).```

Examples

collapse all

Create an `affine2d` object that defines the transformation.

```theta = 10; tform = affine2d([cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1])```
```tform = affine2d with properties: T: [3x3 double] Dimensionality: 2```

Apply forward geometric transformation to an input (`u`,`v`) point.

`[X,Y] = transformPointsForward(tform,5,10)`
```X = 6.6605 Y = 8.9798```

Specify the x- and y-coordinates vectors of five points to transform.

```x = [10 11 15 2 2]; y = [15 32 34 7 10];```

Define the inverse and forward mapping functions. Both functions accept and return points in packed (x,y) format.

```inversefn = @(c) [c(:,1).^2,sqrt(c(:,2))]; forwardfn = @(c) [sqrt(c(:,1)),c(:,2).^2];```

Create a 2-D geometric transform object, `tform`, that stores the inverse mapping function and the optional forward mapping function.

`tform = geometricTransform2d(inversefn,forwardfn)`
```tform = geometricTransform2d with properties: InverseFcn: @(c)[c(:,1).^2,sqrt(c(:,2))] ForwardFcn: @(c)[sqrt(c(:,1)),c(:,2).^2] Dimensionality: 2 ```

Apply the inverse geometric transform to the input points.

`[u,v] = transformPointsInverse(tform,x,y)`
```u = 1×5 100 121 225 4 4 ```
```v = 1×5 3.8730 5.6569 5.8310 2.6458 3.1623 ```

Apply the forward geometric transform to the transformed points `u` and `v`.

`[x,y] = transformPointsForward(tform,u,v)`
```x = 1×5 10 11 15 2 2 ```
```y = 1×5 15.0000 32.0000 34.0000 7.0000 10.0000 ```

Create an `affine3d` object that defines the transformation.

`tform = affine3d([3 1 2 0;4 5 8 0;6 2 1 0;0 0 0 1])`
```tform = affine3d with properties: T: [4×4 double] Dimensionality: 3```

Apply forward transformation of 3-D geometric transformation to an input (`u`,`v`,`w`) point.

`[X,Y,Z] = transformPointsForward(tform,2,3,5)`
```X = 48 Y = 27 Z = 33```

Specify the x-, y- and the z-coordinate vectors of five points to transform.

```x = [3 5 7 9 11]; y = [2 4 6 8 10]; z = [5 9 13 17 21];```

Define the inverse and forward mapping functions that accept and return points in packed (x,y,z) format.

```inverseFcn = @(c)[c(:,1).^2,c(:,2).^2,c(:,3).^2]; forwardFcn = @(c)[sqrt(c(:,1)),sqrt(c(:,2)),sqrt(c(:,3))];```

Create a 3-D geometric transformation object, `tform`, that stores these inverse and forward mapping functions.

`tform = geometricTransform3d(inverseFcn,forwardFcn)`
```tform = geometricTransform3d with properties: InverseFcn: @(c)[c(:,1).^2,c(:,2).^2,c(:,3).^2] ForwardFcn: @(c)[sqrt(c(:,1)),sqrt(c(:,2)),sqrt(c(:,3))] Dimensionality: 3 ```

Apply the inverse transformation of this 3-D geometric transformation to the input points.

`[u,v,w] = transformPointsInverse(tform,x,y,z)`
```u = 1×5 9 25 49 81 121 ```
```v = 1×5 4 16 36 64 100 ```
```w = 1×5 25 81 169 289 441 ```

Apply the forward geometric transform to the transformed points `u`, `v`, and `w`.

`[x,y,z] = transformPointsForward(tform,u,v,w)`
```x = 1×5 3 5 7 9 11 ```
```y = 1×5 2 4 6 8 10 ```
```z = 1×5 5 9 13 17 21 ```

Input Arguments

collapse all

Geometric transformation, specified as a geometric transformation object.

For 2-D geometric transformations, `tform` can be a `rigid2d`, `affine2d`, `projective2d`, or `geometricTransform2d` geometric transformation object.

For 3-D geometric transformations, `tform` can be an `affine3d`, `rigid3d`, or `geometricTransform3d` geometric transformation object.

x-coordinates of points to be transformed, specified as an m-by-n or m-by-n-by-p numeric array. The number of dimensions of `u` matches the dimensionality of `tform`.

Data Types: `single` | `double`

y-coordinates of points to be transformed, specified as an m-by-n or m-by-n-by-p numeric array. The size of `v` must match the size of `u`.

Data Types: `single` | `double`

z-coordinates of points to be transformed, specified as an m-by-n-by-p numeric array. `w` is used only when `tform` is a 3-D geometric transformation. The size of `w` must match the size of `u`.

Data Types: `single` | `double`

Coordinates of points to be transformed, specified as an l-by-2 or l-by-3 numeric array. The number of columns of `U` matches the dimensionality of `tform`.

The first column lists the x-coordinate of each point to transform, and the second column lists the y-coordinate. If `tform` represents a 3-D geometric transformation, `U` has size l-by-3 and the third column lists the z-coordinate of the points to transform.

Data Types: `single` | `double`

Output Arguments

collapse all

x-coordinates of points after transformation, returned as an m-by-n or m-by-n-by-p numeric array. The number of dimensions of `x` matches the dimensionality of `tform`.

Data Types: `single` | `double`

y-coordinates of points after transformation, returned as an m-by-n or m-by-n-by-p numeric array. The size of `y` matches the size of `x`.

Data Types: `single` | `double`

z-coordinates of points after transformation, returned as an m-by-n-by-p numeric array. The size of `z` matches the size of `x`.

Data Types: `single` | `double`

Coordinates of points after transformation, returned as a numeric array. The size of `X` matches the size of `U`.

The first column lists the x-coordinate of each point after transformation, and the second column lists the y-coordinate. If `tform` represents a 3-D geometric transformation, the third column lists the z-coordinate of the points after transformation.

Data Types: `single` | `double`

Version History

Introduced in R2013a