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Modular design platforms require the customization of a single design to meet diverse 

customer requirements dictated by considerations such as application, cost, and operational 

considerations. Many of these dynamic changes in nature have required design component 

variations on top of a fixed master design. The concept of modularity applied intelligently to 

meet such needs has proved to be a cost-effective and efficient paradigm to meet these 

challenges.  In the paper1, we introduced variant semantics and their usage within a graphical 

modeling environment such as Simulink. Also, we introduce a scripting methodology for 

efficiently mapping a custom design to a permutation of variants and their subsequent 

abstraction for ease of understanding. However, this approach required ad hoc management 

of variants and the associated. For casual users, this increases the risk of introducing errors 

into the development workflows. In this paper, we introduce new concepts that addresses those 

challenges, namely, an intuitive graphical user interface, variant configuration data objects, 

data dictionary and project based environment for collaboration. Simulink examples are 

provided are proposed to illustrate these concepts.   

I. Introduction 

 In various organizations, the reuse of software and hardware components continues to be a central design theme2.  

With ever increasing product complexity, high specificity of customer requirements and cost pressures make it 

imperative for engineers to take a design reuse-centric point of view.  It is not surprising to observe that modular 

product architectures and production have long been used in the civil aircraft industry. The variants in Boeing’s 747 

product family show the same reuse pattern with very similar design parameters but serving different requirements3. 

The 747-200B was a pioneer in low-cost air travel for the masses. The 747-200F was a freighter version with an 

upward hinging nose. The 747 SP was an extra-long-range-variant featuring a taller tail and short fuselage. The E-4B 

Command Post variant was equipped to become the wartime emergency base for the US President and his advisors.  

 Variants present a variety of uses in the context of Model-Based Design4, 5 workflows. They enable the creation of 

modular design platforms facilitating reuse and customization. Design exploration where several alternatives exist for 

a component can now be managed efficiently to simulate every design possibility in a combinatorial fashion for a 

given test suite. For large-scale problems, these could be distributed on a cluster of multicore computers for overall 

speedup with our scripting methodology. Alternatively, different test suites could also be mapped for efficiently 

managing relevant tests for a design. Maintenance activities of existing aircraft may require the upgrade of several 

components with no deterioration in existing performance requiring the testing of these upgrades in the model. Design 

elaboration and integration is a challenging activity where low fidelity components are replaced by more specialized 

ones. Since the order in which these components are integrated influence design quality and subsequent iterations, it 

is possible to carry out several separate integrations that increase confidence.  Based on the evaluation criteria, a subset 

of these designs could be shortlisted for rapid prototyping or hardware-in-the-loop testing. With automatic code 

generation, variant components in the software model are mapped to C function code variants that can be switched by 

simply modifying the preprocessor definitions. Conversely, if there be hardware variants such as floating or fixed-

point microprocessors, they will require the use of variants upstream with different modeling implementations.  

 In our previous paper1, we outlined strategies on how organizations can leverage these possibilities to reuse while 

enhancing their existing knowledge to meet the design challenges of the future. The cornerstone of our approach was 

a 2-tier variant framework that used a scripting methodology. However, a key limitation of this approach was the 
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management of control variables and the associated variant objects. Since this variant metadata is present in the 

MATLAB workspace which is a central repository for data across all models, there is a risk of unintentional data 

tampering. To alleviate this, our recommendation was to encapsulate this information within a MATLAB script with 

suitable checks. Since the script had access to the MATLAB workspace, it can be used as a utility script within the 

development environment. We also recommended a better encapsulation strategy which was to create a MATLAB 

class where the variant-related information would be declared as private members and the appropriate method used to 

activate the desired variants. However, such an approach is also fraught with readability issues at the model level 

because an object’s members would have to be accessed using the dot notation. A compact naming scheme may have 

alleviated the issue but it does not scale well as the number of variants increase. The root cause of these issues was 

the lack of a variant-related data namespace which would allow for logical partitioning and separation of variant 

metadata.  

 Another limitation of our approach was the definition of the sets of control variables that would be used to activate 

a configuration in a model. This would pose understandability issues and introduce errors as the definitions would 

reside in the MATLAB scripts. Encapsulating and managing of these sets of control variable data is essential to 

effective variant configuration management. Furthermore, constraints would also need to be imposed to ensure that 

invalid configurations will not be allowed. Although this functionality can be implemented in a MATLAB script, it 

still be burdensome for the casual and intermediate users. 

 In a team-based environment, it may be necessary to architect a model into a component file hierarchy with their 

associated data. However, the placement of variant metadata in the MATLAB workspace will increase the risk of 

corruption by a team member. Thus the needs of collaboration would need to be balanced with the need of isolation 

with respect to variant metadata. Again, MATLAB scripts can be used for separating variant definitions but they still 

do not reduce the risk of data corruption as these would need to be loaded to the MATLAB workspace. 

 In this paper, our goal is to address the limitations posed by the scripting methodology by introducing an intuitive 

graphical user interface. We modify the variant handling framework with the definition of variant configurations. We 

also introduce the concept of a Simulink data dictionary for managing variant metadata and a team-based environment 

for collaboration called Simulink Projects. It is our belief that these concepts taken together will improve upon the 

ideas that we presented earlier. 

II. Variant Framework in Simulink 

 In this section, we reproduce a modified introduction to the variant handling framework in Simulink®6 as presented 

in our previous paper1. The understanding of this framework will lay the foundation for the variant management 

section of this paper. Interested readers are encouraged to read our paper1 covering about other aspects of variant 

management not covered here. A modular design platform1 is a finite set of components and their associated interfaces 

that can form a fixed common structure while allowing for some variability. The example in Figure 1 shows a two-

dimensional user-specified market segmentation model containing twelve segments onto which are mapped two 

component variants each containing two choices. Since only four variant configurations are possible, the redundancy 

across various segments can potentially result in higher economies of scale thereby reducing both sunk and 

incremental costs.  For the sake of demonstration, it is assumed that each segment represented by (S1, S2) has only 

one variant configuration associated with it. This is based on the assumption that sound segmentation schemes, 

possibly higher dimensional will yield this mapping.  
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Figure 1: Redundant variant configurations created from variant choices mapped to market segments. 

 
 

Figure 2: Design variants in a Simulink model are associated with variant objects that encapsulate atomic 

Boolean statements based on control variables defined in a global workspace. 

 

 In Simulink, variable components can be represented either as variant subsystems or model reference variants. 

Variant subsystems allow variant configurations to be incorporated within a single model file whereas model reference 

variants allows for implementation in separate files. A schematic of the implementation is shown in Figure 2. The 

variant choices can have a many-to-one mapping onto a variant object which encapsulates a compound logical 

statement based on the control variables. This mapping is defined at the model-level and is independent of the 

placement of the variant in the hierarchy. The encapsulation is atomic in nature and only allows the association of a 

Boolean logical statement with a variant object. The variant object and the corresponding component in the Simulink 

model are activated at compile time prior to simulation when the encapsulated Boolean statement evaluates to TRUE.  
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 An implementation of the design variants in Simulink is shown in Figure 3 that can be used to represent the four 

design derivatives shown in Figure 1 which are mapped onto 12 segments represented by (S1, S2) market segment 

coordinates. There are four variant objects named X1Y1, X1Y2, X2Y1, and X2Y2. Each of the variant objects is mapped 

to its corresponding files by instantiating them in the global workspace. Within the tool, a global workspace can either 

be a MATLAB workspace or a Simulink data dictionary6. The variant objects are shared across the two model 

reference variants. For example, X1Y1 is mapped to the file choice_X1 file in component variant X and is also mapped 

to the file choice_Y1 file in component variant Y. Observe that the control variables are the market segment 

coordinates (S1, S2) are mapped to the variant objects by compound logical statement construction. By using Boolean 

algebraic theorems, simplifications can be carried that result in compact representation and better readability.  

However, such flexibility does come up with the associated risks of creating unsound compound logical statements 

that may erroneously activate multiple variant choices within a single variant or choose the wrong variant. Checks 

may need to be incorporated to ensure that the control variables are mapped correctly to the logical statements. We 

address these concerns in the next section. 

 

 
 

Figure 3: Implementation of the variant configurations outlined in Figure 1 using model reference variants in 

Simulink. 

III. Managing Variants in Simulink  

  In this section, we cover some of the salient features of a variant management implementation using Simulink 

as an exemplary environment.  

A. Intuitive Graphical User Interface 

Despite the advantages of automation and scalability of scripting methodology1, the approach does present 

adoption challenges for non-expert users. Thus, an intuitive user interface can be an enabling factor that drives 

widespread adoption within an organization. In the following example, the two approaches are shown comparatively.  

In the example shown in the Figure 4, the Plant subsystem has 2 variants, called Piston engine variant and the 

Turboprop engine variant. The Controller subsystem has 3 variants, namely STOL (Short Takeoff and Landing), VTOL 

(Vertical Takeoff and Landing), and NTOL (Normal Takeoff and Landing). Further, the Environment model consists 

of the Steady State and Turbulence variants. The Pilot subsystem also has two variants, Beginner and Expert. In Figure 

5, we define the valid configurations by mapping customer requirements from fictitious customers – Company A, 

Company B and Company C. From the standpoint of serving the customer, there are two enumerated control variables 

tol and engine. The specific combinations of these variables are mapped to the customer needs. For Example, 

Company A has requested a VTOL aircraft with a turboprop engine. Company B has requested a STOL aircraft with a 

Piston engine. While Company C has requested a NTOL aircraft regardless of what the engine type is. These 

requirements can be translated into Boolean logic statements by defining 2 enumerated control variables that can take 
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3 and 2 values each i.e., tol = (vtol, stol, ntol) and engine = (piston, turboprop). From the view point of internal testing 

and ensuring design robustness, 2 environment conditions would need to be permuted with 2 pilot behaviors giving 

rise to 4 test cases for each customer requested aircraft configuration. Again, this can be handled through 2 enumerated 

control variables, env and pilot i.e env = (steadystate, turbulence) and pilot = (beginner, expert). Although, a total of 

24 variant configurations are possible for 3 Controller variants and 2 Plant variants to be tested against 2 Environment 

variants and 2 Pilot variants, only 16 are valid based on customer requests as shown in Figure 6. 

 
 

Figure 4: System level model Aircraft_Variants showing the configuration requested by Company A 

 

 
 

Figure 5: Customer requested configurations 

 

 
 

Figure 6: 16 different variant configurations 

 

 Using the MATLAB scripting methodology1, we create a variant object for each variant. Associated with each 

variant object is a Boolean expression. This is shown in Figure 7. To activate a valid configuration, we create a single 

variant configuration data object with 16 variant configurations. i.e. 4 customer requested variant configurations 
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((VTOL, Turboprop), (STOL, Piston), (NTOL, Piston) and (NTOL, Turboprop)) with 4 test cases each as shown in 

Figure. Clearly, the scripting approach offers the flexibility of incorporating additional code that can be used as a 

trigger or a decision point for activating different configurations. Additionally, the scripting approach is also attractive 

for dealing with a large number of configurations. However, there are several issues associated with this approach. 

There is no top-level information available about the variants and the associated subsystems which can lead to errors.  

 

 
 

Figure 7: Variant object definitions 

 

 The graphical user interface approach takes a different view of this problem by enforcing the following 4 steps as 

shown in Figure 8: 

1. Visualize, explore and set variant controls: Panel A can be used to visualize and explore all variants in a 

central location. Variant objects and associated conditions can be defined in this panel. These variant 

objects are saved to MATLAB base workspace instantly as they get created  

2. Set configurations: Panel B shows a variant configuration data object aircraft_configurations that shows 

16 different configurations as a result of 4 test cases for the 4 customer requested aircraft configurations. 

Each configuration is setup by assigning appropriate values to the control values in panel C such that 

they satisfy the conditions associated with the variant objects for the variant subsystems and model 

variants.  

3. Validate and set default active variants: Each of these configurations can then be validated by the click 

of a button and the errors would appear in panel D.  

4. Export and save: As a last step, the variant configuration data object should be exported and saved to 

file for future use. 
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Figure 8: Variant Manager user interface 

 

B. Managing Constraints 

It may be undesirable to have certain configurations enter a development or testing phase. For this reason, it is 

required to impose constraints on these configurations by defining them within the variant configuration data object 

itself. A constraint can be defined by a name and an associated Boolean logical statement.  

 For example, an aircraft configuration that has STOL controller with a Turboprop engine is not requested by any 

of the customers and so it is unnecessary to test this configuration against the Environment and Pilot variants. A 

constraint Restrict_STOL_Turboprop is created with an associated condition “~((tol==2)&&(engine==2))”. 

This means that whenever the variant configuration is set up such that this condition is not satisfied, an error appears 

in panel D upon validation as shown in Figure 9. Constraints can be placed with a variant configuration object using 

MATLAB scripts as well. Similarly, no customer wants a VTOL aircraft with a piston engine, so an additional 

constraint Restrict_VTOL_Piston with an associated condition, “~((tol==3)&&(engine==1))”can be added to 

address this scenario. 
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Figure 9: Define constraints using Simulink Variant Manager user interface 

 

C. Enabling Team Collaboration Workflows 

Figure 10 shows the example of a team collaboration environment where the engineers would like to work 

independently and parallel with each other and at the same time integrated into the system level model. For this 

scenario, we would need to evolve a mechanism for managing the variant objects and the variant data. Furthermore, 

we would also require that the team is able to work collaboratively. First, let us understand the ownership of the 

various components in this team.  

 The Environment component has two variants, SteadyState and Turbulence that will be worked on by team 

member John. Tom keeps the ownership of the component Pilot which has two variants Beginner and Expert. 

Since John and Tom would like to work independently, their respective components are referenced models 

and hence separate files.  

 The Controller component is owned by Lisa who is a system level engineer and who would need to integrate 

all the components. Since Lisa is the owner of the system level model, she does not need to maintain the 

Controller variants, NTOL, STOL and VTOL as separate files.  

 The Plant component contains two variants Piston and Turboprop developed by Rob and Amy respectively. 

Since they would like to work independently of each other, the variants themselves are referenced models 

and hence separate files.  
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Figure 10: Ownership of the variants in the system level model 

 

A Simulink data dictionary7 is a persistent repository of global design data that a model uses. The dictionary only 

stores design data, which define parameters and signals, and include data that define the behavior of the model. The 

dictionary does not store simulation data, that is, any inputs or outputs of model simulation. It can also store variant 

objects, variant configuration objects and definitions of the control variable associated with each configuration. A 

Simulink data dictionary can only be linked to a model. However, in a model reference hierarchy, it is possible to 

associate a separate data dictionary for each component. Thus, design data separation is possible at the component 

level. However, the parent model requires that the data dictionaries used by all its components be referenced by its 

own dictionary. It is not necessary that the data dictionary hierarchy correspond exactly to the model reference 

hierarchy. On the disk, the Simulink data dictionary exists as a file with a .sldd extension. Being a file, it offers several 

advantages such as access to the data without a network connection, working within a configuration management 

system. 

For this team, we would like to create a data dictionary hierarchy as shown in Figure 11. The system level data 

dictionary, Aircraft_Variants.sldd contains system level parameters required for simulating the system level model. 

Component data dictionaries are partitioned into variant data dictionaries and design parameter data dictionaries. The 

references are made such that the top level model should reference the variant data dictionaries which will in turn 

reference design parameter data dictionaries. The variant data dictionaries contains variant objects, control variables 

and variant configuration data objects for respective variant systems (variant subsystems and model reference 

variants). Similarly, the design parameter data dictionaries contain design parameter definitions. This approach gives 

rise to four variant data dictionaries: Pilot_Variants.sldd, Controller_Variants.sldd, Plant_Variants.sldd, 

Environment_Variants.sldd and nine design parameter data dictionaries: Beginner_Params.sldd, Expert_Params.sldd, 

SteadyState_Params.sldd, Turbulence_Params.sldd, NTOL _Params.sldd, STOL_Params.sldd, VTOL_Params.sldd, 

Piston_Params.sldd and Turboprop_Params.sldd. Although Controller component is modeled as a variant subsystem 

and does not require file separation in the form of a model reference, a separate data dictionary file, 

Controller_Variants.sldd is created for the sake of logical partitioning. Each of these 4 variant data dictionaries 

reference the design parameter data dictionaries. For example, Pilot_Variants.sldd references Beginner_Params.sldd 

and Expert_Params.sldd where Beginner and Expert are the variants of the Pilot component. Furthermore, for each 

of these variant components there may be parameters that may be shared between the variants. For this reason, another 
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data dictionary is created which contain shared parameters. For example, Pilot_Shared_Params.sldd is referenced 

both by Beginner_Params.sldd and Expert_Params.sldd and it may contain parameter data that may be shared by both 

the variants. There are four such shared parameter dictionaries for the project.    

 

 
 

Figure 11: Data dictionary hierarchy 

 

Model reference hierarchy for this example is shown in Figure 12. Figure 13 shows how each of the data 

dictionaries are linked to model references in the context of model reference hierarchy. Each cell shows how each of 

the model references of the system level model, Aircraft_Variants are linked to the corresponding data dictionaries. 

Aircraft_Variants model itself is linked to the system level data dictionary Aircraft_Variants.sldd which has design 

parameter data required at system level. In addition, it references all 4 variant data dictionaries to access the required 

component level data for the purpose of simulation. Lisa, who is the system level engineer is responsible for ensuring 

this referencing so that all the required data is available to simulate the system level model.  

Notice that the data dictionary hierarchy does not necessarily correspond to the model reference hierarchy. As you 

can see, Pilot model is linked to Pilot_Variants.sldd and can be developed and simulated independently by Tom. 

Similarly Environment model is linked to Environment_Variants.sldd and John can independently work on this model 

in parallel with Tom.  Notice that for Plant model variants, Piston and Turboprop are linked to their respective design 

parameter data dictionaries Piston_Params.sldd and Turboprop_Params.sldd instead of variant data dictionaries. This 

is because the Piston and Turboprop models which are model variants of the Plant model do not require variant 

information in order for them to be simulated or developed independently. Hence, by linking the respective design 

parameter data dictionaries Rob and Amy are able to work independently on their models. By partitioning the data 

dictionaries and models this way team collaboration can be enabled in a way where all team members can work 

independently and in parallel.  

 

 
 

Figure 12: Model reference hierarchy 
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Figure 13: A data dictionary hierarchy does not necessarily correspond to model reference hierarchy 

 

Despite componentization, interdependencies exist among team members contributing to a system level design 

within a project setting. There is a risk of ad hoc project management where engineers have to learn to work with 

source control tools or depend heavily on a configuration management specialist within the team for basic tasks8. This 

can lead to process bottlenecks being created, or the abandonment of the process altogether. Simulink Projects is an 

interactive tool in Simulink for managing project files and connecting to source control software. As shown in Figure 

14, it takes a design-centric approach in which the file and project management tasks are exposed to the engineer from 

within the design tool. By providing flexibility to connect the design tool to various source control tools via an 

authoring application program interface (API), the amount of the latter tool’s exposure for common tasks engineers 

perform can be managed, while other critical project management tasks still remain with the configuration 

management specialist.  
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Figure 14: Impact analysis within Simulink Projects interface shows model reference and data dictionary 

hierarchy as outlines in the example. 

 

D. Variants As An Alternative to Branch Management 

 One of the challenges of using branching in source control is the cost of merging a branch to the trunk once the 

feature is completed. This work is redundant if the updates made by a design engineer are restricted to a well-defined 

component i.e. model reference. Alternatively, she can create a model variant with two components- one that 

represents the head of the trunk version and the other, as the updated version. Such an approach allows the design 

engineer to have access to the latest updates to the system level model while working on her feature. In contrast, in 

the branching workflow the system level model version that she would have to work with would correspond to the 

head of the trunk when the branch is created.  

IV. Conclusion 

 As discussed, modular design platforms with the ability to incorporate component variants enables reuse for large 

scale systems. In the context of Model-Based Design, the traditional scripting methodology1 presents adoption 

challenges as mentioned in Section III.  

 In this paper, we presented an approach that addresses these issues through a Simulink example by introducing the 

Simulink Variant Manager user-interface. In contrast to the scripting methodology1, Simulink Variant Manager offers 

an intuitive user interface for variant representation. It provides a view of variants present in the system level hierarchy, 

with the associated variant objects that contain Boolean logical statements. Variant configurations allow the setting of 

control variables for switching variants across the model. Constraints prevent the activation of undesirable variant 

configurations. Furthermore, a validation tool is provided to ensure variant representation consistency. It is important 

to have a clear understanding of how the variant designs will ultimately map to the market needs. This may require 

agreement on market requirements involving cross-functional groups spread across marketing, sales, manufacturing, 

and development. 

An interesting application of variant management occurs in a team-based setting where tradeoffs between 

isolation and sharing of variant data need to be carried out. In this paper, we outlined best practices for managing this 



   

 
© 2015 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks 

for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders. 

 

complexity with the use of data dictionaries. As our example showed, it is possible to create a system level model 

with a hierarchy of separate model reference components and data dictionaries with associations defined between 

them. It is also possible to create a hierarchy that allows for separation of concerns for parallel development. Since 

these files would reside in a source control system and accessible through Simulink Projects, engineers can work 

independently while keeping track of updates made my other members. However, there is no silver bullet and the 

solution is highly context dependent. Our hope is that organizations will use the best practices outlined in this paper 

as a foundation to further evolve them. At the very least, we are of the opinion that such approaches will aid in the 

creation of robust architectures that manage variability more effectively and foster a spirit of collaboration that 

encourages sharing while respecting the boundaries.  
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