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The doorbell started life as a simple me-
chanical device. It had one button with a 
single function: to ring a bell. 

Today’s version is likely to have a camera, 
a motion sensor, video, and a smartphone 
interface that can access data sent from the 
doorbell to the cloud. It is no longer just a 
doorbell; it is a complete security system. 

The evolution of the doorbell is just one ex-
ample of digital transformation—the use of 
technologies such as data analytics, connec-
tivity, cloud computing, and AI to transform 
products, processes, and entire systems. 

are applied systematically to workflows 
throughout the life cycle of the product or 
service.  

The systematic use of data can start with an-
alytics developed specifically to get insights 
from experimental and research data. But 
it also means scaling and extending those 
analytics to the huge, heterogeneous sets of 
live and archived data, acquired from man-
ufacturing, maintenance records, and other 
business processes, to enable data-driven 
decisions not only during research and de-
sign but also in production, operations, and 
maintenance. 

Systematically Using Data: 
From Data Siloes to  
Data Analytics 

As organizations recognize today, the chal-
lenge is not the lack of data but the crushing 
volumes and variety of their data—not only 
engineering, scientific, and field data but 
also business and transactional data. The 
diversity of data management approaches 
adds to the complexity: Data may be stored 
on-premise or in the cloud, in consolidated 
data lakes or separate databases, in rela-
tional databases or spreadsheets. And every 
datastore may have a different governance 
policy and access permissions. 

Digital transformation begins when the 
accumulated knowledge and transforma-
tive potential of this data can be uncovered 
and applied systematically throughout the 
product life cycle. The core tasks are, first, 
to integrate data from multiple repositories;  
second, to develop analytics that are easy to 

Almost every organization seems to include 
digital transformation in its vision and strat-
egy, but most struggle with executing digital 
transformation initiatives. There are myriad 
reasons: the challenges of introducing new 
technologies and providing the workforce 
with relevant skills, ensuring that the com-
pany’s culture and organizational structures 
are conducive to change, and anticipating 
correctly which processes need to change 
and how, to name a few. 

To effect change, some organizations begin 
with proof-of-concept and pilot projects. 
They soon find themselves mired in a “pilot 
purgatory,” unable to scale up by formal-
izing the piloted approaches and making 
them part of the company’s standard work-
flows and practices. Other organizations 
start with large infrastructure development 
efforts that are difficult to execute and fail 
to meet the requirements of the actual proj-
ects, workflows, or products that emerge 
from the transformation strategies. 

We have observed that organizations are of-
ten most successful with digital transforma-
tion when they adopt a pragmatic approach. 

What Is Pragmatic  
Digital Transformation? 

Pragmatic digital transformation does not 
require starting from the ground up or 
completely overhauling existing processes 
and assets. Just the reverse; its fundamen-
tal principle is reuse: In pragmatic digital 
transformation, data and models—and the 
engineering teams’ associated skills in devel-
oping analytics, models, and simulations— 

Using Big Data Analytics to Optimize Manufacturing Processes at GSK Consumer Healthcare 

GSK Consumer Healthcare’s R&D team wanted to improve manufacturing processes and increase 
capacity at the company’s toothpaste manufacturing plants. The most cost-effective approach, 
they knew, would be to systematically use the historical data they had accumulated over the years. 
They set out to see whether they could learn from that history to make better products. 

They began by focusing on process data. Accumulated across all their factories, formulations, and 
batches, the data amounted to terabytes, and it was housed in separate siloes, separate systems, 
and different formats.  

To get insights from their process data, GSK first needed to clean it by filtering out noise, filling in 
missing data, and removing outliers. They could then use it to compare phases from batch to batch.  

The R&D team built an algorithm in MATLAB® to sort and tag the data by formulation phase (Startup, Add Silica, or Finishing), and ran this algo-
rithm across all their process data. They built an interface in MATLAB that enables their process engineers to select and observe data by formula-
tion combination, batch, and operator.  

By linking manufacturing phases to analytical data, GSK has seen dramatic improvements in both processes and capacity—for example, vessel 
heating time, which used to take 30 minutes, now takes just two minutes. These improvements translate into significant business benefits: reduced 
time to market for new formulas, and increased output from factories previously thought to be close to full capacity. 
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By Michael Carone, Paul Pilotte, and Jim Tung, MathWorks 

In pragmatic digital transformation, a digital thread connects your system from requirements to architecture to testing and the system in operation, opening opportunities 
to improve models, processes, and end products.

 “Lying hidden within the servers and 
notebooks of the manufacturing 

communities, there exists a wealth of 
untapped knowledge. It is long  
overdue that we brush off this  

diligently collected process data and 
begin to learn the secrets it hides.” 

—Bob Sochon, GlaxoSmithKline 

https://www.mathworks.com/company/newsletters/news_notes/2020.html
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Minimizing the Cost of Ownership with Simulation and Digital Twins at Atlas Copco 

Air compressor manufacturer Atlas Copco has turned the systematic use of models and data into a collaboration platform that streamlines communi-
cations across their technical organizations and within their global sales organization.   

In developing their new ZR 160 VSD+ product line, Atlas 
Copco engineers had two priorities: reliability—if a single 
compressor fails, the entire production plant fails—and en-
ergy efficiency—electricity accounts for 75% of the total life 
cycle cost of a compressor, a considerable amount when the 
average compressor runs day and night for 10 years.  

Not only did the team want to design an efficient product; 
they also wanted to design the product efficiently.  

They implemented a framework to manage the models, the 
data, and variants based on a digital twin. The same models 
drive the configuration applications that their sales and appli-
cation engineering teams use to configure and quote systems 
for specific customers.  

With this platform they can quickly implement and deploy  
upgrades onto 120,000 machines that are in operation 
worldwide. Each machine is equipped with up to 50 sensors 
that continuously relay data back to the Atlas Copco data 
warehouse, enabling the service division to set up customer- 
specific predictive maintenance strategies based on real- 
time information on the condition of the machine. 

use and access; and third, to integrate those 
analytics into the workflow at the right time 
to enable groups throughout the organiza-
tion (engineering, business-unit manage-
ment, analysts, service teams, and more) 
to apply insights from the data to improve 
processes or designs.

Extending the Use of Models: 
From Development to the 
System in Operation 

The systematic reuse of models is a basic 
principle of Model-Based Design, where 
models form a digital thread connecting de-
velopment, design optimization, code gen-
eration, and verification and validation. This 
digital thread does not need to be limited to 
the development process; it can be extend-
ed to deployed systems in operation when 
design models are reused as digital twins. A 

ATLAS COPCO MODEL-BASED ENGINEERING PLATFORM

MBE APPLICATIONS

ERP

DIGITAL TWIN STORAGE DIGITAL TWIN PROCESSING

MATLAB Production Server

EXTERNAL DATA SOURCES

MES PLM IoT

MBE COMMUNITY OF EXCELLENCE

digital twin—an up-to-date representation 
of a system or subsystem as it operates—can 
be used to assess the current condition of 
the asset, and more importantly, optimize 
the asset’s performance or perform predic-
tive maintenance.  

Improved Processes,  
Deeper Insights 

In pragmatic digital transformation, previ-
ously siloed data is combined and applied 
throughout development and deployment 
to improve processes and provide insights 
into system performance. A system mod-
el captures the high-level system behavior 
as well as the detailed subsystems. Those 
models connect to system requirements for 
traceability and early validation. Subsystem 
models can be reused to generate an imple-
mentation as software or an FPGA. And the 

models are reused for integration, valida-
tion, and verification, either at the model 
level or operating on the actual code. 

By taking a pragmatic approach, organiza-
tions can reap the business benefits of digital 
transformation—improved quality, higher 
output, cost savings—while avoiding the 
struggles and pitfalls that deter some from 
embarking on, or even contemplating, a dig-
ital transformation initiative. ◆

“We use a digital twin as the single source of truth and then 
build applications on top so that everyone has  

access to the same data and information.”

—Carl Wouters, Atlas Copco

https://www.mathworks.com/company/newsletters/news_notes/2020.html


The Lightyear One solar-powered electric car can 
run 450 miles on a single charge—and when the 54 
square feet of solar panels covering its hood and 
roof are exposed to perpetual sunlight, Lightyear One 
could get 12,000 miles per year on solar power alone. 
The car’s electronics convert sunlight into electricity 
and optimize how much energy the car draws from 
the battery. As a result, it uses just 160 watt-hours of 
electricity per mile.

Lightyear One is a startup founded by members of the 
Eindhoven University of Technology team that won 
the Bridgestone World Solar Challenge. To optimize 
aerodynamics, the team used lightweight materials and 
a small battery pack, incorporated motors into each 
wheel instead of relying on one large engine and a 
drive train, and replaced wing mirrors with cameras.  
In wind tunnel tests, Lightyear One broke the record for 
being the most aerodynamic five-seater electric car  
to date. 

SUNLIGHT
RUNNING A CAR ON

Lightyear One. Image credit: Lightyear 
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Year One: Systems Modeling,  
Simulation, and Computation

All first-year engineering undergraduates take ES197: Systems Mod-
elling, Simulation, and Computation. In this module, students learn 
how to use both physical and (simple) data-driven approaches for 
modeling engineering systems. This module also serves as an intro-
duction to programming. 

To familiarize themselves with programming and with MATLAB®, 
students complete lessons from the online MATLAB Fundamentals 
course. From an educator’s perspective, this approach works really 
well, as it allows students to learn at their own pace and get immedi-
ate feedback on the programming exercises.   

After applying the MATLAB skills they’ve acquired to assignments 
on curve fitting and deriving simple models and relationships from 
data, the students tackle modeling and simulation problems using 
examples from electrical, thermal, and translational systems.  

In later assignments, students incorporate noise or other random 
effects into the model. For example, we have them create a simple 
model in MATLAB in which particles shoot up into the air and fall 
back down while being acted upon by random forces. The simula-
tion produces an interesting 3D visualization (Figure 1). The entire 
project gives students confidence in their abilities to create their own 
models programmatically.  

Year Three and Beyond

For students interested in exploring data science and machine learn-
ing further, Warwick offers a third-year module on intelligent sys-
tem design that covers computer vision and more advanced machine 
learning techniques. In this module, I introduce the sense-perceive-
act framework used in many autonomous control system applica-
tions. The quadcopter model in Simulink® (Figure 3) is very useful 
for showing this basic framework while introducing topics to be cov-
ered later in the module, such as Kalman filtering and optical flow. 

Later, students develop a gesture recognition app with MATLAB that 
combines computer vision and machine learning. For this project, 
students develop a model capable of interpreting webcam images 
of their own hands and classifying them as one of several predeter-
mined hand gestures. The project is particularly engaging for the 
students because they are working with their own data and need to 
think about factors such as lighting and how many different images 
are needed to train an accurate classifier. 

Students who learn how to apply data science techniques in the con-
text of real-world problems early in their studies are well prepared 
not only for advanced coursework in subsequent years but also for 
careers as practicing engineers. We have already received very posi-
tive feedback from our students on this approach—they have found 
that they are able to apply these techniques during undergraduate 
internships and to talk about these skills in interviews.  

With device connectivity enabling companies to base their design 
decisions on data rather than on intuition or previous experience, 
engineers with a background in data analytics are very much in 
demand. We are confident that our graduates will be able to ap-
ply machine learning and data analytics whenever the situation  
requires it. ◆

Data science and machine learning will soon be essential skills for all engineers, whether they are applying 

machine learning algorithms, providing data to feed these algorithms, or making decisions based on the results. 

That is why, in 2018, we introduced data science as a thread through the Warwick Engineering degree, starting 

from the introduction of programming and simple statistical models during the first year, moving to a core data 

analytics module in the second year, and then offering more stream-specific modules in the third and fourth years. 

Figure 1. MATLAB 3D visualization of particles responding to random forces.

By Thomas Popham, University of Warwick 

Equipping  
Student Engineers  
with Data Science Skills

Year Two: Engineering Mathematics  
and Data Analytics

The second-year module ES2C7 Engineering Mathematics and Data 
Analytics focuses on solving regression, classification, and clustering 
problems. When I worked in industry, I saw that solving data science 
problems was relatively straightforward once the data was clean and 
in the proper format, but that is rarely the case with real-world data. 
With this in mind, I teach the students how to identify and remove 
outliers, handle missing values, and organize data in tables.  

MATLAB live scripts are particularly useful during lectures because 
I can include formatted text and images to remind me of what I want 
to cover and because the output of the code appears along with the 
code that produced it. The Classification Learner and Regression 
Learner apps in Statistics and Machine Learning Toolbox™, mean-
while, make it possible to teach the broad principles of regression and 
classification without delving into implementation details (Figure 2). 

After completing lab assignments on regression, classification, and 
clustering, the students work on a group project in which I ask them 
to imagine working for an engineering consultancy tasked with as-
sessing the quality of manufactured steel components. The students 
must predict which components are most likely to fail using two data- 
sets, one that is fairly clean and one that is messy and complicated.  

Working with noisy data in a variety of file formats, including Excel®, 
CSV, and plain text, the students remove outliers, perform joins, and 
prepare the data to be used in training a model. Most groups use the 
Regression Learner app or implement linear regression in a MATLAB  
script; some try both approaches. 

Figure 2. Classification Learner app.

Figure 3. 3D visualization of Simulink quadcopter example. 

https://www.mathworks.com/company/newsletters/news_notes/2020.html
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By Sainath Karlapalem, NXP Semiconductors

Environment-in-the-Loop  
Verification of Automotive  
Radar IC Designs

Our customers, who include many tier 1 automotive suppliers, are 
most interested in the kinds of performance metrics captured on a 
datasheet, such as signal-to-noise ratio (SNR) and total harmonic 
distortion (THD). They are less interested in individual component 
test results, code coverage results, and other metrics at the hardware 
implementation level, although these results are a primary concern 
of most IC verification teams. In addition, our customers use field 
trials and real-world driving scenarios to evaluate complete radar  
systems, while IC verification teams often use test patterns that are 
far removed from real-world signals to evaluate individual RF, ana-
log, and digital components (Figure 1). 

The shift-left methodology that my team and I have defined and im-
plemented aligns the processes we use to verify IC designs with the 
criteria our customers use to evaluate them. The on-road driving sce-
narios we developed for virtual field trials are based on the European 
New Car Assessment Programme (Euro NCAP) standard that many 
of our customers follow, and the functional and performance metrics 
we produce (for example, SNR) are the same metrics that our cus-
tomers use to evaluate IC components in their own products.

Early Verification of  
Datasheet-Level Metrics 
When verifying the digital portions of automo-
tive radar systems in the past, my team adopted 
an approach based on the Universal Verification 
Methodology (UVM). This approach involved 
replicating the functionality of the design under 
test (DUT) with a reference model created in 
a high-level language. The output of the DUT 
was then compared with the output of the ref-
erence model for a given input test vector. The 
UVM tests did not capture SNR measurements 
and other metrics our customers were interest-
ed in, and even relatively small implementation 
changes, such as updating the coefficients of a 
finite impulse response (FIR) filter, required a 
corresponding change in the testbench. Keeping 

the testbench in sync with the implementation required considerable 
effort and time. 

Given the drawbacks and limitations of this approach, we decided to 
focus our verification efforts on the functionality and performance 
of our design rather than on one-to-one equivalence between the 
implementation and reference model. Now, we develop MATLAB® 
algorithms that compute high-level design metrics such as SNR, 
THD, and power spectral density (PSD), as well as metrics for filters 
and other components, such as stopband attenuation and passband 
ripple. Using HDL Verifier™, we generate SystemVerilog DPI compo-
nents from these MATLAB algorithms and integrate them into the 
HDL testbench for the Cadence® simulation environment (Figure 2).

Sample signal data is collected from the DUT and passed to the 
DPI-C function generated from our MATLAB verification code. We 
plot the results (Figure 3) and check them against the system require-
ments to ensure that the design matches the specifications. 

Using DPI-C models generated from MATLAB enables us to com-
pute functional and performance metrics at multiple interfaces in 

At NXP Semiconductors, my team and I have developed a new methodology for verifying automotive 
radar integrated circuit (IC) designs. This shift-left methodology combines early verification of 
datasheet-level metrics with virtual field trials. By focusing on metrics at the specification level rather 
than the hardware implementation level, we ensure that the verification signoff criteria we use to 
evaluate a design align with those our customers are most interested in. And, by simulating on-road 
scenarios in virtual field trials, we enable environment-in-the-loop verification with realistic test stimuli 
for radar IC hardware. 

Figure 1. Automotive radar system architecture showing RF, analog, and digital subsystems. 

https://www.mathworks.com/company/newsletters/news_notes/2020.html
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We have extended our methodology to include environment- 
in-the-loop verification. We now build driving scenarios using the 
Driving Scenario Designer app in Automated Driving Toolbox™  
(Figure 4). Prebuilt scenarios in the app represent the Euro NCAP 
test protocols, our customers’ benchmark for evaluating radar system 
performance.

Next, we build a radar sensor model with Phased Array Toolbox™.  
To match this model with the datasheet specifications of our ac-
tual sensor, we adjust parameters for antenna aperture, peak 
transmit power, the receiver noise figure, and the number of an-
tenna elements. We also adjust parameters that affect the frequency- 
modulated continuous-wave (FMCW) waveform, including maxi-
mum range, chirp duration, sweep bandwidth, and sample rate. We 
integrate the sensor model into the driving scenario that we creat-
ed earlier, virtually mounting the radar sensor on the ego vehicle  
(Figure 5). 

the Cadence HDL verification environment. We can decouple design 
implementation from verification and conduct testing at a level of 
abstraction more closely aligned with the metrics that interest our 
customers. 

We can also reuse the C code generated from MATLAB to analyze 
the results from tests of initial silicon. For example, we collect sample 
data from our radar sensor IC and pass it through the same SNR cal-
culation C functions generated from MATLAB that we used to verify 
our design in SystemVerilog. 

Virtual Field Trials 
In our transition to a metrics-driven verification approach we con-
duct virtual field trials using data from real-world driving scenarios. 
In the past, we verified the RF, analog, and digital subsystems sep-
arately, using a different set of test vectors for each subsystem. Few 
of these test vectors were derived from radar reflections obtained 
during on-road tests. 

Figure 4. Driving Scenario Designer app in Automated Driving Toolbox. 

Figure 5. Interface for managing the placement of the radar sensor on the ego vehicle. 

Figure 6. Chase camera view (top left) and bird’s-eye plot (right) from a virtual field trial. 

Figure 3. Sample signals (top) and power spectral density plots (bottom) computed using MATLAB. 

We then execute the driving scenario and 
capture the mixer output of the sensor, a 
signal dechirped from the radar reflections 
of objects in the scenario. We pass this de-
chirped signal through a Simulink® model 
of our ADC design to produce digital IQ 
data, which we feed into our digital base-
band processing chain. 

With this setup we can generate IQ data 
based on Euro NCAP driving scenarios 
and conduct virtual field trials of our digital 
processing chain early in the development 
phase—potentially a year or more before 
first silicon (Figure 6). 

Future Work 
We have extended our use of the new meth-
odologies and workflows to next-generation 
radar transceivers. For these products, we 
will incorporate environmental effects into 
our scenarios so that we can see how the de-
sign performs in the presence of rain or fog, 
for example. 

Recognizing that nothing restricts this new 
verification methodology to the digital com-
ponents of automotive radar systems, we are 
looking forward to applying virtual field tri-
als to analog components and to other appli-
cations, such as car-to-car communication 
systems. This article focused on verifying 
the digital portion of the sensor implemen-
tation, but this environment-in-the-loop 
approach can easily be extended to verify 
mixed-signal and RF designs such as the 
ADC in the sensor design. ◆

Many thanks to my NXP Semi team member 
Kaushik Vasanth for implementing our envi-
ronment-in-the-loop verification methodolo-
gy, and to Vidya Viswanathan of MathWorks 
for offering timely technical support.

Figure 2. A test environment using MATLAB verification functions implemented in a SystemVerilog wrapper via DPI-C with HDL Verifier. 
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The shift-left methodology that 
my team and I have defined 
and implemented aligns the 
processes we use to verify IC 
designs with the criteria our 

customers use to evaluate them.
— Sainath Karlapalem, NXP Semiconductors

https://www.mathworks.com/company/newsletters/news_notes/2020.html
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Smarter Lidar
Light detection and ranging (lidar) sensing 
systems emit thousands of pulses of light every 
second. These pulses bounce off surrounding 
objects and reflect back to the vehicle, where 
a computer uses each data point, or voxel, to 
reconstruct a three-dimensional image of the 
environment.

Because inclement weather interferes with 
the signal, lidar is often combined with other 
sensing technologies, such as cameras, radar, or 
ultrasonics. But that combination can produce 
an overwhelming amount of redundant and 
irrelevant information.

Engineers at AEye, based in Dublin, California, 
have advanced the capabilities of lidar by fusing 
it with a high-resolution video camera. Their 
system, called iDAR, for Intelligent Detection 
and Ranging, merges the high-resolution pixels 
from a digital camera with the 3D voxels of 
lidar. Because the laser pulses and video camera 
gather optical information through the same 
aperture, the two data streams are integrated and 
can be analyzed at the same time, saving time  
and processing power.

Unlike traditional lidar systems, which scan a 
scene equally across the whole environment, 
iDAR adjusts its light-pulsing patterns to give 
key areas of the scene more attention. Computer 
vision algorithms determine where to direct 
the pulses. They first analyze the camera data to detect the edges of 
objects and then initiate the higher-resolution lidar scans to classify, 
track, and predict the motion of those objects. 

Heat Waves
Conventional lidar is extremely accurate, but snow, rain, and fog 
reduce its ability to tell animate from inanimate objects. Traditional 
radar, on the other hand, can see through the snow, is excellent at long 
distances, and can judge the relative speed of objects, but it cannot 
distinguish what those objects are. Cameras can classify as well as 
read traffic lights and street signs, but glare can disrupt the quality, 
and at night, they can only see what the headlights illuminate.

Owl AI’s team fills in the gaps with 3D thermal imaging, which 
senses heat signatures given off by people and animals and greatly 
simplifies object classification. Owl AI’s Thermal Ranging™ can pick 
up the infrared heat of a living object. It sees the object, whether it’s 
moving or stationary, by day or night and in any weather conditions, 
up to 400 meters away, and can calculate the object’s 3D range and 
velocity up to 100 meters away.

The device consists of a main lens similar to the one in a regular 
camera and an array of very small lenses positioned between the 
main lens and a detector. The array breaks the scene into a mosaic 
of images, each one looking at the object of interest from a different 
angle. An algorithm measures the subtle differences between the 
images to calculate how far away the object is.

Enhancing Safety
Vehicle perception technologies are key to providing a safe automated 
driving experience. To deliver on the promise of fully autonomous, 
self-driving cars, tech companies are using AI and computer vision 
to help vehicles see and sense their environment. And although fully 
autonomous cars aren’t the norm yet, these companies are bringing 
us closer while improving the safety systems in new cars today. ◆

Beamsteering Radar
Engineers at California-based Metawave are pushing the limits of 
radar to recognize other autos, pedestrians, stationary surroundings, 
road hazards, and more in all weather conditions and at night. The 
company’s analog radar platform, SPEKTRA™, forms a narrow 
beam and steers it to detect and classify objects within milliseconds. 
Metawave technology can see pedestrians 250 meters away and 
recognize vehicles 330 meters away. It can also accurately measure 
angular resolution, or small distances between two objects, enabling 
the radar to distinguish one object from another. 

Image credit: Metawave Corp.

Image credit: AEye, Inc.

The Path Toward Fully Autonomous, Self-Driving Cars

At the 1939 New York World’s Fair, General Motors unveiled its vision of smart highways and self-driving cars. Although that dream has 
yet to materialize, advances in perception technology for autonomous cars have been dramatic, with cameras that read road and traffic 
signs, ultrasonics that sense nearby curbs, laser-based lidar for seeing 200 meters out or more, and radar that measures range and velocity.  
Paired with artificial intelligence (AI), these technologies help drivers park, back up, brake, accelerate, and steer; detect lane boundaries; 
and even prevent sleepy motorists from drifting off behind the wheel.

Here are three ways that engineers are advancing vehicle perception to usher in a future of fully autonomous, self-driving cars.

Road Ahead
Seeing the

Conventional digital radar systems capture all the information at 
once, like a powerful flashbulb illuminating a scene. Metawave’s 
radar works more like a laser beam able to see one specific section of 
space at a time. The beam rapidly sweeps the environment, detecting 
and classifying all the objects in the vehicle’s field of view within 
milliseconds. 

The technology gives cars self-driving features such as left-turn assist, 
blind-spot monitoring, automatic emergency braking, adaptive 
cruise control, and lane assist.  
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Control Design for Power 
Electronics: Batteries, Motors, 
and Power Conversion

Batemo: Batemo Cells 

Microchip: Motor and Controller Model 
Libraries, MPLAB Device Blocks 

Speedgoat: Real-Time Target Machines 

NXP: Model-Based Design Toolbox 

The more-electrification trend in key industries has increased 

engineers’ need for cohesive tools to design, prototype, and 

deploy their power electronics control systems. With Simulink®, 

Simscape®, and third-party products, engineers can design 

control algorithms graphically and then simulate them togeth-

er with accurate models of batteries, motors, and power con-

verters. They can perform rapid control prototyping (RCP) and 

hardware-in-the-loop (HIL) testing to verify these algorithms. 

They can then generate production-ready C or HDL code from 

the algorithms to run on MCUs, DSPs, and FPGAs.

Batemo Cells are high-precision models of lithium-ion battery cells, 
including popular cells used in battery systems. The models are based 
on physical cell geometry and describe the inherent chemical processes 
even under extreme conditions where conventional models fail, includ-
ing high currents, low states of charge, and extreme temperature ranges. 
The battery models can be incorporated into system models as Simulink 
blocks for real-time simulation and verification. 

Microchip provides blocksets for simulating and deploying motor and 
power control algorithms to PIC32 and SAM microcontrollers and 
dsPIC® digital signal controllers. The Motor Control Library Blockset 
contains Simulink blocks for motor control applications, including 
reference frame transforms, a proportional-integral controller, and trig-
onometric functions. The Motor Model Library adds a Simulink model 
for simulating permanent-magnet synchronous motors. For deploying 
control algorithms onto hardware, MPLAB® Device Blocks for Simulink 
provide peripheral blocks for digital and analog I/O, counters and timers, 
pulse width modulation motor control, and more. You can add these pe-
ripheral blocks to your Simulink models and then generate C/C++ code 
to run on PIC32, SAM, or dsPIC devices. 

Speedgoat offers high-performance, real-time target machines for RCP 
and HIL testing of power electronics applications. Typical applications 
include prototyping battery management systems (BMS) for electric 
cars, HIL testing of motor controllers, and prototyping power converter 
controls. Engineers can deploy their Simulink control algorithms onto 
Speedgoat hardware to connect to power converters and motors. HIL 
testers can run deterministic Simscape-based models of electrical sys-
tems, including switching dynamics, power sources, and loads.  
Speedgoat offers specialized configurations for prototyping battery 
management systems, enabling engineers to quickly connect their hard-
ware to complex electrical motor, battery pack, or drivetrain models. 

NXP’s Model-Based Design Toolbox is a toolchain for configuring 
and generating software to execute motor control algorithms on NXP 
processors. The toolbox provides a Simulink blockset for peripheral de-
vices such as PWM, A/D, and CAN, as well as optimized motor control 
blocks for Park/Clarke transforms and digital filters. The toolbox is in-
tegrated with an Embedded Coder® target for generating and deploying 
code onto NXP processors and performing software-in-the-loop and 
processor-in-the-loop testing. The NXP Model-Based Design Toolbox 
supports Motor Control Blockset™ with examples that can be deployed 
to S32K microcontrollers. 

batemo.com 

microchip.com/modeling 

Power Electronics Control Design 
mathworks.com/power-electronics

Third-Party Products and Services 
mathworks.com/connections 

nxp.com/mctoolbox 

speedgoat.ch 

Learn More

https://www.batemo.de/
https://www.microchip.com/design-centers/motor-control-and-drive/motor-control-simulations/matlab-simulink
https://www.mathworks.com/solutions/power-electronics-control.html
https://www.mathworks.com/products/connections.html
https://www.nxp.com/design/automotive-software-and-tools/nxp-model-based-design-toolbox-mbdt:MBDT?&tid=vanMCTOOLBOX
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Clinicians who treat cancer patients with radiation rely on treatment planning software that optimizes the 
radiation dose to ensure tumor coverage while sparing surrounding tissue and organs. 

Commercially developed treatment planning software is proprietary and closed source. As a result, many 
institutes and universities either invest significant effort in developing and maintaining their own or use open-
source packages, most of which cover only a single step in treatment planning. 

Researchers at the German Cancer Research Center (Deutsches Krebsforschungszentrum, or DKFZ) have 
developed matRad1, a multimodality dose calculation and optimization toolkit for radiation treatment 
planning. Because matRad is written entirely in MATLAB®, researchers can easily modify the code to evaluate 
new algorithms. MATLAB excels at performing the many sparse matrix operations involved in treatment 
planning; as a result, matRad produces clinically accurate treatment plans as quickly and easily as its 
commercial counterparts. 

Developing an  
Open-Source Toolkit  
for Radiation Therapy Planning 

Left: The matRad 2.10.0 interface, with workflow, plan, optimization, and visualization controls.  
Right: 3D rendering of computer tomography and planned proton dose in the coronal plane of a head-and-neck cancer case.

The matRad package includes MATLAB scripts, functions, and classes that span the entire treatment planning 
workflow, from setting treatment parameters and optimizing the plan to visualizing and evaluating the results. 

matRad remains under active development, and the team regularly accepts pull requests from researchers. 
For example, they recently worked with Dr. Edgardo Dörner at Pontificia Universidad Católica de Chile to 
incorporate a Monte Carlo photon dose calculation engine into matRad. 

Since matRad was designed as a research tool, it cannot be used to treat actual patients. The dose calculations 
it produces, however, closely match those produced by clinically approved treatment planning systems. This 
level of performance opens opportunities to use matRad as an independent tool for validating treatment plans 
generated by other software. 
1 The current release is matRad ‘Blaise’ 2.10.0. http://doi.org/10.5281/zenodo.3879616

http://doi.org/10.5281/zenodo.3879616
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tests created by the power engineers and another round of modeling 
guideline compliance checks. 

If the control model passes all tests and checks, Jenkins invokes  
Embedded Coder® to generate C++ code from the model. The gener-
ated C++ code is compiled into a DLL, which is then used in PSCAD 
to run simulations of the full plant and its control software.  

Vestas uses these simulations to demonstrate to transmission system 
operators how the plant will perform when connected to the grid 

To create a system model for closed-loop simulations, engineers in 
this second group combine the control model with a Simulink model 
that captures the impedance and dynamic characteristics of the grid 
at the point of connection with the plant. They incorporate a wind 
turbine model developed in a proprietary tool and packaged as a DLL 
by another Vestas group.  

After running closed-loop simulations with this system model and 
running checks to ensure compliance with modeling standards based 
on MathWorks Automotive Advisory Board (MAAB) guidelines, the 
engineers check the control model into a Git repository. The model  
check-in triggers a Jenkins job that runs the test cases developed 
earlier with Simulink Test, as well as additional simulation-based 

Before adopting Model-Based Design for power plant control design, 
Vestas engineers used a conventional approach in which paper-based 
specifications and design documents developed by power engineers 
were handed off to software engineers, who wrote code for individual 
components or features manually. The power engineers ran simula-
tions using PSCAD software, but these simulations focused on elec-
trical power rather than software control. The simulations did not 
incorporate the control code, which meant there was little assurance 
that the PSCAD simulations reflected the system performance once 
the software was integrated and deployed. Vestas wanted to elimi-
nate the potential for human error that comes with handwriting code 
while ensuring that its power systems simulations corresponded with 
the control software.  

In addition, Vestas wanted to enable an engineering team that 
spanned five countries in Europe and Asia to work together on the 
same projects—and in some cases, on the same models. This geo-
graphically dispersed team needed to apply version control to mod-
els, manage frequent merges, and automate simulation-based tests.  

Establishing a New Workflow 
To meet these requirements, Vestas decided to use CI with Jenkins™ 
and to incorporate CI principles into an engineering workflow based 
on modeling, simulation, and code generation (Figure 1).  

Today, when a grid code change is proposed or a customer requests 
a new feature or component, Vestas engineers create a set of formal 
requirements. Based on the requirements, one group develops test 
cases with Simulink® and Simulink Test™ that will be used to veri-
fy the new feature, while a second group models the new feature in  
Simulink and Stateflow®.  

With more than 66,000 turbines totaling more than 100 GW of installed wind power capacity in 80 
countries, Vestas Wind Systems A/S has installed more wind power than any other company. Vestas 
engineers use Model-Based Design with continuous integration (CI) to develop power plant control 
software and demonstrate compliance with grid codes to Vestas customers and grid operators.

Developing Wind Power Plant  
Control Software with Model-Based  
Design and Continuous Integration

Figure 1. Model-Based Design and CI workflow. 

Image courtesy of Vestas Wind Systems A/S 

under normal conditions and in the presence of voltage 
drops, oscillations, and other disturbances. Finally, the 
generated code is tested on the target industrial control 
system before being deployed into production. ◆

We can show our customers 
and grid operators a simulation 

that incorporates the actual 
code that will run in our power 

plant controller. That’s what 
grid operators want, and it 
gives Vestas an advantage 

over competitors who still use 
conventional approaches. 

— Per Hagen Nielsen, Vestas

https://www.mathworks.com/company/newsletters/news_notes/2020.html
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For organizations that manufacture or operate industrial machinery, 
a predictive maintenance program is key to increasing operational 
efficiency and reducing maintenance costs. 

At the same time, however, developing and deploying predictive 
maintenance algorithms to any asset, whether to an aircraft, an MRI 
machine, a wind turbine, or an assembly line, can be challenging. 
Algorithm development requires not only extensive experience in 
machine learning techniques but also deep understanding of the 
system’s behavior. Engineers possessing both these skills can be hard 
to come by. Deployment, meanwhile, involves a complex series of 
steps and interconnections. The algorithm must be implemented on 
multiple assets. Those assets will be connected to multiple edge de-
vices, which in turn connect to an IT/OT system that may be cloud-
based, on-premise, or both. Portions of a single algorithm may live 
on different elements of this infrastructure, adding to the complexity 
(Figure 1).

Deploying Predictive  
Maintenance Algorithms  
to the Cloud and Edge 
By Aditya Baru, MathWorks

ENTERPRISE IT/OT SYSTEMEDGEASSET

DASHBOARDS

ARCHIVED DATA

.xls .csv .txt

Packaging
Machine

PLC

Request
Broker

MATLAB 
PRODUCTION SERVER

Kibana

APACHE
KAFKA

PREDICTIVE MAINTENANCE
ALGORITHM

Azure

Using a packaging machine as an example, this article shows how to 
handle these complexities by developing a predictive maintenance 
algorithm and deploying it in a production system with MATLAB®.  

Packaging Machine  
Maintenance System 
The packaging machine has several robotic arms (Figure 2, left). The 
arms move back and forth at high speed, moving objects onto the 
assembly line for packaging. They are connected to programmable 
logic controllers (PLCs) that communicate with a Microsoft® Azure®-
based IT/OT system. This IT/OT system collects streaming data 
from the edge devices connected to the robotics arms, runs predic-
tive maintenance algorithms based on this data to detect anomalies 
and predict when they might fail, and returns the results to dash-
board tools used by engineers and operators.   

Figure 1. Components of a deployed predictive maintenance system.

Figure 2. Packaging machine predictive maintenance system. 

ENTERPRISE IT/OT SYSTEM

Databases

EDGEASSET DASHBOARDS

ARCHIVED DATA

.xls .csv .txt

On-premise

Analytics Platforms

Containers

Messaging and Streaming

Big Data

OT Platforms

Azure

AWS

OSIsoft

Microsoft Power BI

Tableau

Qlik

Spotfire

Kibana

Amazon S3 Azure Blob

20      mathworks.com/news-notes MathWorks News&Notes      21

https://www.mathworks.com/company/newsletters/news_notes/2020.html
https://www.mathworks.com/company/newsletters/news_notes/2020.html


MathWorks News&Notes      2322      mathworks.com/news-notes

The Predictive Maintenance Algorithm 
The predictive maintenance algorithm for this system has two com-
ponents. The first is implemented on the edge and performs data 
reduction using feature extraction techniques. The second is imple-
mented in the cloud and uses these feature values and a machine 
learning model to predict when a failure will occur and to estimate 
the machine’s remaining useful life (RUL). The results of this pre-
dictive algorithm are streamed into our dashboard in near real time.

Developing the Data  
Reduction Algorithm 
The first part of our predictive maintenance algorithm acts on the 
raw sensor data generated by the robotic arms. We are tracking the 
speed and the current drawn by the motor driving each arm.  

The sensors used for machines like these can sample data at a very 
high rate. Storing such vast amounts of sensor data can be expen-
sive, and analyzing this data is time-consuming, as the sheer volume 
makes it hard to identify regions of interest. We can solve this prob-
lem with feature extraction.  

Feature extraction techniques accept streams of raw sensor data and 
return a smaller set of features that capture key dynamics, significantly  

Figure 4. Deployment to PLC and testing in real time using Speedgoat hardware.

IMA Active designs and manufactures automatic processing and packaging machinery for the pharmaceuticals industry. The company wanted 
to develop a predictive maintenance system that would monitor the health of a tablet press production machine. The machine has critical moving 
parts that require precise lubrication. Too little lubricant causes stress and failure.  
Too much lubricant can cause leakage into the final product. 

The predictive maintenance system would use data obtained from the two sensors 
already available on the machine and would be self-teaching, with no need for 
external intervention. 

IMA Active engineers used Predictive Maintenance Toolbox to develop algorithms 
for the system. They began by extracting features from the two sensors—a total of 36. 

They extracted, visualized, and ranked features from the sensor data using the 
Diagnostic Feature Designer app in Predictive Maintenance Toolbox. With these 
features they trained a fault classification model that uses machine learning techniques 
to estimate the health of critical moving parts in the tablet press. 

The predictive maintenance system enables machine operators to optimize resource 
use and schedule maintenance activities according to production needs. 

Using MATLAB tools, we 
managed to extract and 
select the best features 
to build a classification 

model. The most promising 
algorithm uses five features 
and has an accuracy of 89%.

— Alessandro Ferri, IMA Active
Figure 3. The Diagnostic Feature Designer app. 

reducing storage and transmission 
needs. The sensors in the robotic arm 
capture data at 1 KHz—that is, at 1000 
samples per second. Condensing one 
second’s worth of this data to a set of five 
features will reduce our data storage and 
transmission needs by a factor of 200. 

Using the Diagnostic Feature Designer  
app in Predictive Maintenance  
Toolbox™, we import the sensor data, 
extract features using signal-based 
and dynamic-modeling techniques, 
and rank the features by their ability to 
distinguish data generated by a healthy 

machine from that generated by a faulty machine (Figure 3). 

Once we have selected the features we want to extract, we are ready 
to implement and test the data reduction algorithm on the PLC that 
acts as our edge device. Instead of testing the algorithm on a real 
machine, which could damage the machine, we connect the PLC to a 
Simscape model of the robotic arm running on a Speedgoat real-time 
computer. This real-time computer can communicate with our PLC 
by sending and receiving data as if it were an actual machine. We 
begin by generating C code for the data reduction algorithm with 
Simulink Coder™ and deploying it to the PLC. We then deploy our 
packaging machine model to the Speedgoat system and perform sim-
ulations under different fault conditions to ensure that our algorithm 
will work correctly in a real-world environment (Figure 4).

Developing the Predictive Algorithm 
We now have an edge device that reduces the amount of data being 
transmitted by extracting meaningful features from it. We can stream 
the reduced dataset into our IT/OT system using Apache™ Kafka, an 
open-source stream processing platform running in the Azure cloud. 
We will use this streaming data to estimate the RUL of the packaging 
machine motors.  

As the condition of the motor deteriorates over time, the values of 
the extracted features will increase or decrease steadily, at a linear 
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or exponential rate (Figure 5). Based on this 
trend, we select an exponential degradation 
model in Predictive Maintenance Toolbox 
to predict the future health of the machine. 

To make this algorithm compatible with 
a cloud-based system, we use MATLAB  
Compiler SDK™ to create an executable, 
which we then integrate into the IT/OT 
system using MATLAB Production Server™ 
(Figure 6). 

We now have machine learning algorithms 
that predict failures in our packaging ma-
chine using features extracted from raw 
data by edge devices connected to individu-
al robotic arms, and a web-based dashboard 
that gives us immediate access to the results 
(Figure 7). ◆

Figure 5. Sample RUL plot of streaming data.  

Figure 6. Cloud deployment overview.  

Figure 7. Final web dashboard. 

Case Study: IMA Active
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On Monday, November 5, 2018, Parker Solar Probe (PSP) 
reached its first perihelion, passing closer to the Sun’s surface 

than any spacecraft had done before (Figure 1). Even at a top speed 
of about 213,200 miles per hour, it would take the spacecraft several 
days to pass behind the Sun and reemerge on the other side. During 
this time, researchers and engineers at NASA and at Johns Hopkins 
University Applied Physics Laboratory (JHU APL) waited anxiously 
for the first status beacon signal. On Wednesday, November 7, the 
signal was received:  Parker Solar Probe was operating at status “A,” 
with all scientific instruments running and gathering data. 

Just under two weeks later, Parker Solar Probe reestablished full 
contact. As each subsystem was polled for its status, the APL teams’ 
excitement grew. The science recorders had filled as expected, the 
spacecraft had maintained its attitude, and it was on the right trajec-
tory. Over its nearly seven-year mission, Parker Solar Probe will orbit 
the Sun 24 times, coming gradually closer after each of seven Venus 
gravity-assist flybys until it passes within 3.83 million miles, close 
enough to fly through the Sun’s atmosphere (Figure 2).

Confirmation that Parker Solar Probe had made first contact with the 
Sun was especially welcome news for the guidance, navigation, and 
control (GNC) team at JHU APL, which was responsible for devel-
oping the spacecraft’s attitude control algorithms. Designed, imple-
mented, and verified using Simulink®, these algorithms are mission- 
critical: they not only control the orientation of the spacecraft, they 
also keep its carbon-composite thermal protection system (TPS) 
pointed toward the Sun. A one- or two-degree deviation in orienting 
the TPS can mean the difference between a successful mission and 
destruction of the spacecraft.

Guidance and Control Design Constraints 

In orbiting the Sun, Parker Solar Probe would be subjected to heat 
475 times more intense than it would experience in an orbit of Earth. 
This meant that the attitude control system had to orient Parker Solar 
Probe so that it was continuously protected by the TPS. 

Figure 1. Artist’s rendition of the Parker Solar Probe approaching the Sun. Image credit: JHU APL. parkersolarprobe.jhuapl.edu

Aiming Parker Solar Probe 
at the Sun with Simulink 
GNC Software 
By Greg Drayer Andrade, MathWorks

Figure 2. Graphs showing the Parker Solar Probe mission’s planned path and solar 
approach distances. Image credit: JHU APL. parkersolarprobe.jhuapl.edu

http://parkersolarprobe.jhuapl.edu/
http://parkersolarprobe.jhuapl.edu/
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Because of the unforgiving environment that Parker Solar Probe 
would be operating in, an unprecedented number of simulations 
were performed. In fact, the number of formal simulations was in-
creased by more than an order of magnitude compared with the 
previous mission led by JHU APL. Simulations covered both normal 
operating scenarios, including momentum dumps and trajectory 
correction maneuvers, and fault scenarios. 

Most spacecraft are designed as fault-tolerant systems, but for this 
mission, solar conditions were more extreme than any previous 
spacecraft had experienced. For example, losing a star tracker on a 

Since the Sun is the biggest and brightest object in the solar system, 
at first it might seem simple to keep a spacecraft oriented toward it. 
In practice, however, attitude control for Parker Solar Probe is quite 
complex. One challenge is that near perihelion, none of the sensors 
that provide input data for the attitude control algorithms are actual-
ly pointed at the Sun. Instead, they are positioned behind the TPS to 
protect them from solar thermal radiation (Figure 3). 

Two star trackers pointed away from the Sun can be used to gauge 
orientation from the positions of stars, but the design team had to 
plan for the possibility that these sensors would be unusable near 
perihelion. The spacecraft is equipped with two Digital Sun Sensors 
(DSS), but they can only be used far from the Sun. The Solar Limb 
Sensors (SLS) are designed for close range use, but they only detect 
the edge of the Sun when the spacecraft begins to rotate away from its 
ideal attitude. To develop a single fault-tolerant system for each seg-
ment of the orbit, it was vital to ensure that sufficient hardware was 
placed on the vehicle and incorporated into the control algorithms. 

A second challenge was that the control algorithms had to make at-
titude corrections using as little electric power and thruster fuel as 
possible. Close to the Sun, Parker Solar Probe’s solar panels remain 
almost entirely within the TPS shadow so that they do not melt. Ex-
tending the panels increases the pressure exerted on them, resulting 
in unwanted torque. Further, fuel for the spacecraft thrusters had 
to be used sparingly to ensure that supplies would last through the 
years-long mission. 

Developing a Truth Model 

The “truth” model for the spacecraft, built in MATLAB®, Simulink, 
and Simscape Multibody™, is essentially a plant model that captures 
orbital effects, physical interactions, and other spacecraft dynamics 
(Figure 4). 

Over time, many subsystems were incorporated into the model, in-
cluding the battery subsystem, the thrusters, the star trackers, and 
the inertial measurement unit. The team also modeled the physical 
joints between the solar arrays and the main bus. As the model be-
came more sophisticated, they were able to run increasingly accurate 
simulations. For example, they added a subsystem that models the 
effect of propellant slosh on spacecraft dynamics. 

Developing GNC Flight Software

The initial attitude control system design did not include reaction 
wheels. Using only thrusters to manage momentum and make atti-
tude corrections was one possible way to reduce weight and power 
consumption. To test the feasibility of this approach, the GNC team 
modeled several controller designs, including one with a pulse-width 
pulse-frequency modulator, and ran closed-loop simulations with the 
truth model. While the controller designs looked promising, there 

was no guarantee that the mission could be 
completed without the addition of reaction 
wheels. Fortunately, as the design matured, 
the team was able to make room for reaction 
wheels. This greatly simplified the overall de-
sign and allowed for improved accuracy and 
stability for scientific observations.

They created a system that non-propulsively 
manages momentum via the reaction wheels 
and fires thrusters to dump momentum when 
the wheels reach a specified momentum lev-
el. They reused much of the work from the 
thruster-only Simulink model in the rede-
signed controller. Altogether, the controller 
model included more than 22,000 blocks and 
almost 1200 lines of MATLAB code.

Figure 3. The Parker Solar Probe.  
Image credit: JHU APL. parkersolarprobe.jhuapl.edu

Figure 4. The Parker Solar Probe plant model, which consisted of nearly 1400 blocks and  
1811 lines of MATLAB code.

spacecraft is considered a serious fault, but for Parker Solar Probe, 
it was necessary to plan for the likelihood that not just one but both 
star trackers could be blinded by a solar event and that additional 
faults could occur at the same time. 

Code Generation and Test-Bed Verification

Initial verification of the controller design was performed via closed-
loop simulations in Simulink. After generating code from the con-
troller model using Simulink Coder™, the team ran software-in-the-
loop (SIL) simulations in which the control model was replaced with 
the generated code. 

After SIL testing and code optimization, the control design was ver-
ified on the JHU APL test bed (Figure 5). For this stage, code gen-
erated from the Simulink attitude control model was handed off to 
the flight software group, who incorporated it into the Parker Solar 
Probe flight software. The team also delivered code from the truth 
model to the test bed group, who integrated it with the test bed that 
emulates Parker Solar Probe hardware. Acceptance tests of the flight 
software were then conducted on the test bed. Closer to launch, more 
of the emulated components in the test bed were replaced with actual 
hardware components integrated on the spacecraft; for example, em-
ulated reaction wheels were replaced with real ones.

Making In-Mission Adjustments

On Sunday, August 12, 2018, Parker Solar Probe was launched with a 
Delta IV Heavy rocket from Cape Canaveral Air Force Station, Flori-
da (Figure 6). In addition to relaying scientific data back to Earth, the 
spacecraft is sending telemetry data, which the APL team analyzes 
and compares with simulation results in Simulink. They have already 
refined and calibrated their truth model based on these comparisons. 

The spacecraft, including the attitude control system, was designed 
to operate autonomously, in part because it can take more than 15 
minutes for radio signals to reach it from Earth. Nevertheless, there 
are three ways to make in-mission adjustments: send commands to 
execute preplanned maneuvers or actions, modify flight software pa-
rameters, or update the flight software itself. Since launch, the team 
has performed two software updates that incorporate improvements 
that were verified using the updated truth model. 

As the mission continues, Parker Solar Probe orbits will become 
tighter and the time between orbits shorter. The APL team is devel-
oping MATLAB automation tools that will enable them to rapidly 
analyze new data from the spacecraft and respond quickly enough 
to make any needed changes before the next flyby. From the GNC 
team’s perspective, the control software has been performing very 
well—in fact, it has far exceeded expectations. ◆

Figure 5. The JHU APL test bed.  
Image credit: JHU APL. parkersolarprobe.jhuapl.edu

Figure 6. Parker Solar Probe launch.  
Image credit: JHU APL. parkersolarprobe.jhuapl.edu
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or Sevilleta NWR. The camera is number 28, 
located at Pino South. A human expert has 
saved this data to the CameraSweet folder 
for two bears. 

I searched through many two-bear images, 
looking for a cute one, and found the one 
shown in Figure 2. The name of the JPG 
image is a time stamp for June 10, 2012, 
14:06:20 hours. The command

imshow(example)

accesses the data and produces Figure 2.

Trail cameras are automatically triggered by 
animal movements. They are used by ecol-
ogists and wildlife managers around the 
world to study wild animal behavior and 
help preserve endangered species. I want to 
see if MATLAB® image processing and deep 
learning can be used to identify individual 
animal species that visit trail cameras. We 
are going to start with off-the-shelf func-
tionality—nothing specialized for this par-
ticular task. 

My partners on this project are Heather 
Gorr and Jim Sanderson. Heather is a ma-
chine learning expert at MathWorks. Jim 
was one of my Ph.D. students at the Univer-
sity of New Mexico. He spent several years 
at Los Alamos National Laboratory writing 
Fortran programs for supercomputers. But 
an interest in nature photography evolved 

Figure 1. The five data site locations. 

An Experiment in Deep 
Learning with Wild Animal 
Trail Camera Data
By Cleve Moler, MathWorks

into a desire to switch to a career in ecology. 
He is now the world’s leading authority on 
small wild cats. He is also the proprietor of 
CameraSweet, a software package used by 
investigators around the world to classify 
and analyze their trail camera data. 

Our Data

Our study uses data collected by the United 
States Fish and Wildlife Service (FWS) office 
in Albuquerque over the past 10 years from 
four National Wildlife Refuges (NWRs) 
and one private ranch. The map in Figure 1 
shows the locations of the sites.

Most of the data comes from the Sevilleta 
NWR, a 230,000-acre protected area in the 
Chihuahuan Desert in central New Mexico.  
Another site, also in New Mexico, is the  
Armendaris Ranch, 350,000 acres of private 
land owned by Ted Turner, the billionaire 
founder of CNN and former husband of ac-
tress Jane Fonda.

There is a lot of data—almost 5 million 
images in total. Sevilleta and three other 
NWRs contributed almost 4 million images 
that have already been classified by human 
experts, while the Armendaris Ranch and 
the Laguna Atascosa NWR in Texas contrib-
uted an additional million images that have 
not yet been classified.

Figure 2. A mother bear and her cub, captured by camera 28. 

CameraSweet has 
the researcher save 
images in a col-
lection of folders, 
one folder for each 
camera, with sub-
folders for each 
species and for the 
number of animals 
seen in a single im-
age. Each image file 
is labeled with the 
date and time when 
it was recorded. 

To read the Fish 
and Wildlife Ser-
vice data, our 
MATLAB program creates a string array, 
FWS, of length 3,979,549, containing the 
path names of all the images in the dataset. 
For example, 

k = 2680816;

example = FWS(k)

    example = "D:SNWR\Pino...  
       South (28)\Bear\02\... 
       2012 06 10 14 06 ... 
       20.JPG"

The FWS entry for this example tells us that 
the data lives on a hard drive attached to my 
drive D: and that it comes from site SNWR, 

Sevilleta NWR
Cabeza Prieta NWR
Kofa NWR
Laguna Atascosa NWR
Armendaris Ranch
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Naming and  
Labeling Species

Researchers using CameraSweet have some 
flexibility in the way they name species. 
“Mountain Lion” and “Puma” are the same 
animal. There are several different spell-
ings of “Raccoon.” We have unified the 
names into 40 that we call standard. These 
names are the row and column headings in  
Figure 7.

Our MATLAB program creates a second 
string array, Labels, that has the stan-
dard names for the images in FWS. Using  
Labels, it is easy to count the number of 
images for each standard species. Here are 
the first and last three entries in this  census.

Two species, “Mule Deer” and “Pronghorn,” 
together account for almost 2 million im-
ages, which is half of our data. The spe-
cies “Ghost” describes the situation where 
something triggers the camera but there 
appears to be nothing in the image. Ghosts 
were discarded in the Sevilleta data, but 
the other sites provide plenty. The name 
“Few” is a catch-all for 10 species, including 
“Ocelot” and “Burro,” that have fewer than  
1000 images.

Overall, there is a huge disparity in the 
extent to which different species are repre-
sented in the data. A word cloud provides 
a good visualization of the species distribu-
tion (Figure 3).

The Trail Camera Images

Some of the images provide excellent por-
traits of the animals. Figure 4 shows four 
examples. 

Javelina are found in Central and South 
America and the southwestern portions of 
North America. They resemble wild boar 
but are a distinct species. Pronghorn and 
coyotes are common at most of our sites. 
Nilgai are ubiquitous in India, where Hin-
dus regard them as sacred. They were in-
troduced into Texas in the 1920s. The only 
place they are found in our sites is Laguna 
Atascosa NWR.

About one-third of the images were taken at 
night with infrared, and appear in grayscale, 
like the top two examples shown in Figure 5.

The two oryx images were easily classified 
by human experts, even though the images 
show very different views. Traditional image 
processing techniques, which would look 
for features like number of legs, presence 
and style of antlers, and type of tail, would 
be baffled by the badly lit closeup on the 
bottom right. 

There are thousands of images triggered 
by nonwildlife activity, including humans, 
cows, horses, vehicles, and domestic ani-
mals. In Figure 6, the image on the upper 
right has been classified as a ghost.

The subject in the lower left is obviously too 
close to the camera. There are faint yellow 
specks in the image on the lower right that 
could be a swarm of small flying insects. 
Both images are classified as “unidentified.”

Training Our Deep  
Learning Network 

Inception-v3 is a convolutional neural net-
work (CNN) that is widely used for image 
processing. We will use a version of the 
network pretrained on more than a mil-
lion images from the ImageNet database. 
Inception-v3 is an off-the-shelf image 
CNN. There is nothing in it specifically for  
trail cameras.

We choose a random sample of 1400 from 
each of our 40 species and designate 70% 
(980) as training images and 30% (420) as 
validation images.

We let the training run overnight on a 
Linux® machine with a GPU (Xeon® E5-
1650v4 processor, 3.5  GHz, 6 HT cores, 
64 GB RAM, and a 12 GB NVIDIA® Titan 
XP GPU).

The resulting confusion chart (Figure 7) is a 
40-by-40 matrix A where a(k,j) is the number 
of times an observation in the k-th true class 
was predicted to be in the j-th class. If the clas-
sification worked perfectly, the matrix would 
be diagonal. In this experiment, the values on 
the diagonal would all be 420. Nearness to di-
agonal is a measure of accuracy:

accuracy = sum(diag(A))/... 
   sum(A,'all') = 0.8686

Figure 3. Word cloud showing relative distribution of species.

Figure 4. Example trail camera images. Clockwise from bottom left: coyote, javelina, pronghorn, and nilgai.

Figure 5. Top: two grayscale infrared images. Bottom: two full-color images of an oryx.

Figure 6. Images triggered by nonwildlife activity. Top: A human (left) and a “ghost” (right).  
Bottom: “unidentified” images.

Many of the large off-diagonal elements are 
not surprising. The smallest diagonal value, 
216, is for birds. The row labeled Bird shows 
that the predicted class is often some other 
species. The next smallest diagonal element, 
270, is for unknown. There is confusion be-
tween unknown and other species. Coyotes, 
with a diagonal value of 297, do not fare 
well, perhaps because they often appear in 
ambiguous images. Deer and nilgai, with 
diagonal values of 358 and 352, have good 
overall accuracy but are confused with  
each other.

On the other hand, the animals that are cor-
rectly classified the most often include the 
Barbary sheep, whose diagonal value is 405. 
Eagles, horses, and pronghorn are correctly 
classified 390 or more times. The bighorn 
sheep has a 386.

We now have a CNN trained to classify trail 
camera images. How does it perform at a 
new location with images that have never 
been classified? 

We sample every tenth image from the  
Armendaris Ranch, a total of 18,242. The 
CNN classify function found 39 different 
species. 

Almost half of the classifications—8708—
were for bighorn sheep. Only 454 were for 
mule deer. This surprised me at first, be-
cause it meant that the network was predict-
ing that Armendaris has almost 20 times as 
many bighorn sheep as mule deer, while Se-
villeta, less than 100 miles to the north, has 
the opposite: 40 times as many mule deer as 
bighorn sheep. 

But this result doesn’t surprise Jim Sand-
erson. The mountains on Armendaris are 
the natural habitat for the sheep. The ranch 
manages the bighorn sheep in the same way 
that it manages its buffalo herds. Hunting 
bighorn rams is an important source of in-
come for the ranch.

The CNN classification labels 93 images as 
pumas. This appears to be an overestimate. 
Examination of the 93 images reveals only 
10 or 11 of the elusive animals.

images percent species

1282762 32.23 Mule Deer

690131 17.34 Pronghorn

407240 10.23 Elk

...

1909 0.05 Skunk

1659 0.04 Badger

1402 0.04 Barbary 
Sheep
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All four images in Figure 8 are from  
Armendaris. The upper two are correct-
ly classified by the CNN as bighorn sheep 
and puma, respectively. But the lower two 
receive the same classifications; that is  
clearly incorrect.

Conclusion

Overall, this deep learning classifier is 
more successful than I would have pre-
dicted. Even in its current state, it may be 
useful to investigators. Any further de-
velopment of our CNN should focus on 
designing features specific to trail camera  
image identification.

One thing is clear—the more data the better. 
The 5 million images collected by the Fish 
and Wildlife Service were essential for train-
ing a network to this level of accuracy.
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Figure 8. Classification of previously unclassified images from the Armendaris Ranch. The upper images are 
classified by the CNN as bighorn sheep and puma, evidently correctly. The lower images are also classified 
as bighorn sheep and puma, apparently incorrectly.

Figure 7. Confusion matrix, used to check the accuracy of the classifier.
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ROBOTICS AND AUTONOMOUS SYSTEM

Enterprising startups and researchers envision robotic 
systems that can sense touch, enable telerobotic surgery, 
speak several languages, and more—and they are close to 
making that vision a reality.

Performing Heart Surgery on a 
Patient Located Miles Away

The interventional cockpit, comprising a radiation shield, 
monitor, and control console. Image credit: Corindus.

Patients suffering an acute heart attack 
or stroke need immediate treatment in a 
hospital. Unfortunately, not all hospitals 
have physicians trained in percutaneous 
coronary intervention (PCI) or neuro-
vascular intervention (NVI) procedures, 
and not all patients have ready access to 
a critical care unit.   

Corindus has developed a robotic plat-
form that makes it possible for surgeons 
to perform PCI and NVI on patients 
located hundreds or even thousands of 
miles away. Dr. Tejas Patel recently used 
the CorPath platform to perform the first 
long-distance telerobotic-assisted PCIs, 
completing five successful procedures 
over two days at the Apex Heart Institute 
in Ahmedabad, India.

“

“

“
Every second matters for stroke victims, 
just as it does for those who suffer heart 
attacks. Our ability to treat patients 
wherever they are with our remote robotic 
protocol is the wave of the future.
Nicholas Kottenstette, Corindus

Giving Robots a Sense of Touch 

A Robot That Walks, Talks, Dances, 
and Speaks 20 Languages 

Drexel University’s Expressive and 
Creative Interactions Technology 

NAO is a two-foot-tall, humanoid robot 
designed by Aldebaran Robotics to 
interact in a natural way with humans. 
The robot can adapt to its environment; 
recognize shapes, objects, and even 
people; and speak clearly in more than 
20 languages. NAO has been used in care 
homes and hotels, where it can greet res-
idents, provide companionship, and per-
form tasks such as check-in and check-
out. NAO also helps children with special 
needs. For example, therapists use it to 
teach social skills to autistic children, who 
are both reassured and engaged by the 
robot’s playful yet predictable behavior.  

Hubo’s touch-sensitive sleeve (left) and full-body protective 
clothing (right). Image credit: Drexel University.

If you want a robot around your house 
who can take out the garbage or do the 
dishes, it needs to interact with people 
on a much more natural level than we’re 
capable of right now. Sensing in all 
forms, but particularly touch, is a huge 
part of that.

The robot can provide guidance, moti-
vation, and feedback, while creating a 
bond with the child who is using it.

Dr. Youngmoo Kim, Drexel University 

 Dr. Yu-Ping Chen, Georgia 
State University 

Building a Complex Robotics System 
in Days
HEBI Robotics hardware and software 
tools enable academic and industrial 
roboticists to build professional-grade, 
customized robots in weeks, or even 
days. HEBI kits provide prebuilt robotic 
systems, including a six-degrees-of-
freedom robotic arm, a self-balancing 

(ExCITe) Center equipped their in-
house robot, Hubo, with padded, flexible 
outerwear to protect it from fall and 
collision damage. 

Capacitive touch sensors in the sleeves 
give Hubo a sense of touch. The sensors 
are essentially circuits knitted with 
conductive yarn that acts as the wiring. 
When a person’s skin presses the bare 
conductive yarn, Hubo identifies the 
location and pressure of the touch, 
enabling it to distinguish, say, a gentle tap 
on the shoulder from an aggressive push.

Igor, a self-balancing two-wheeled robot built 
using the HEBI Robotics platform. Image credit: 
HEBI Robotics.

two-wheeled robot, and a hexapod, as 
well as MATLAB scripts to control a 
single actuator or the assembled robot. 
After mastering the basics with a kit, 
researchers can quickly develop their own 
control applications by extending the 
example code or using it as a template.
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Automating the Analysis of  
Satellite-Based Radar Imagery 

for Iceberg Surveillance  
with Deep Learning 

By Kelley Dodge and Carl Howell, C-CORE

On average, some 500 icebergs enter the Newfoundland and Lab-
rador offshore area each year, posing potential threats to shipping 
and marine operations. In the 1990s, companies began using satellite 
synthetic aperture radar (SAR) to monitor icebergs and sea ice. SAR 
is well suited to the task because it can capture images from large 
swaths of ocean both day and night, as well as through clouds, fog, 
and other adverse weather conditions. 

Analysis of SAR images involves identifying targets (clusters of 
high-intensity pixels) in the image and categorizing them as either 
icebergs or ships (Figure 1). Even for highly trained specialists it can 
take hours to analyze a handful of frames, particularly when the tar-
gets are difficult to discern. 

Our team at C-CORE has partnered with the Norwegian energy 
company Equinor to develop new automated software that uses deep 
learning to classify targets in SAR images. We decided to harness the 
expertise of the worldwide community of AI researchers by hosting a 
Kaggle competition. We studied the best ideas from the competition, 
implemented them with convolutional neural networks (CNNs) in 
MATLAB®, and then built software that could be used operationally. 

Figure 1. SAR image taken near Greenland, with targets circled. 

Challenges in Iceberg Identification 

The resolution of a SAR image depends upon how much area the im-
age covers: images that focus on relatively small regions have higher 
resolution than those that cover wide swaths of ocean and are there-
fore easier to classify (Figures 2 and 3). In practice, to extract the 
greatest amount of useful information from a dataset, we must work 
with images at all levels of resolution, even images with targets only 
a few pixels wide.

Before we began using deep learning, we used quadratic discrimi-
nant analysis for iceberg classification, but this involved segmenting 
the images to separate the target pixels from the background ocean 
pixels. Image segmentation was a challenge because ocean conditions 
vary widely, and the visual clutter caused by poor conditions made 
it difficult to define the contours of each target. With CNNs, there is 
no need to distinguish a target from its background, since the algo-
rithms are trained on complete SAR chips, fixed-dimension images 
containing a single target. 

The Kaggle Competition 

Our Kaggle competition presented participants with a simple chal-
lenge: develop an algorithm capable of automatically classifying the 
target in a SAR image chip as either a ship or an iceberg. The dataset for 
the competition included 5000 images extracted from multichannel  

SAR data collected by the Sentinel-1 satellite along the coast of Lab-
rador and Newfoundland (Figure 4). Our competition proved to be 
the most popular image-based competition ever hosted on Kaggle,  
with 3343 teams contributing more than 47,000 submissions.

The best-performing entries all used deep learning. Their models 
shared many common characteristics and layers, including convolu-
tion, rectified linear unit (ReLU), max pooling, and softmax layers. 
In addition, the top entries all used ensembles to boost prediction 
accuracy from about 92% to 97%. 

Building Our Deep Learning Model  
with MATLAB 

Using the top Kaggle entries as a starting point, we developed our own 
deep learning model with MATLAB and Deep Learning Toolbox™. 
We began by modifying a simple classifier provided in Deep Learning 
Toolbox. Within a few days we had a network that worked well. 

To optimize network performance, we tested different combinations 
of parameter values, varying, for example, the number of nodes in 
each layer, the filter size used in the convolution layer, the pool size 
used in the max pooling layer, and so on. We wrote a MATLAB script 
that automatically built, trained, and tested 10,000 different CNNs, 
with values for these parameters randomly generated within reason-
able limits and constraints. 

https://www.mathworks.com/company/newsletters/news_notes/2020.html
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Figure 2. Color composite images of an easily classified iceberg (top right)  
and ship (bottom right) created from multiple polarization channels (labeled  
HH and HV). 

Figure 3. Color composite images of iceberg (top right) and ship (bottom right) 
that are difficult to classify. 

We performed a simple greedy search on the 
results to find the seven highest-performing 
CNNs and used them to create an ensemble. 
Like the ensembles used by the Kaggle com-
petition winners, our ensemble increased 
overall accuracy by almost 5%. 

By working in MATLAB, within two weeks 
we went from knowing little about the im-
plementation of CNN classifiers to produc-
ing a solution that performed well enough 
to be employed operationally. 

Integrating the Classifier 
into a Complete System 

Target discrimination is one step in a multi
step process for iceberg identification. The 
process also involves land masking, to elim-
inate false detections caused by on-land  
objects, and integration with geographic 
information system software, to produce 
maps showing the locations of icebergs and 
ships (Figure 5).

When RADARSAT Constellation Mission 
satellites begin generating data this year, 
we will have access to even more SAR im-
ages—far too many for analysis via manual 
visual inspection. Software systems that in-
corporate deep learning algorithms like the 
ones we developed in MATLAB will enable 
C-CORE to make the most of this data by 
processing it accurately, quickly, and auto-
matically. ◆

Figure 4. SAR data collected by the Sentinel-1 satellite along the coast of Newfoundland and Labrador.  
Adblu. “Statoil/C-CORE Iceberg Classifier Challenge: Ship or iceberg, can you decide from space?” Kaggle, 
8 November 2017, https://www.kaggle.com/c/statoil-iceberg-classifier-challenge/discussion/42108. 

Figure 5. Iceberg locations plotted on a map. 
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Climate researchers and oceanographers rely on 
underwater images to document and understand the 
impact of climate change on coral reefs and other  
marine systems. But most underwater photographs have 
a pervasive blue tint that washes out vital details.  

This blue tint is caused by the visual distortion that 
occurs when light travels through water. Blue and violet 
wavelengths are absorbed less than red, yellow, and 
orange wavelengths—and the more water the light travels 
through, the fewer wavelengths reach the object. Particles 
in the water create backscatter or haze, further reducing 
image clarity. 

An algorithm developed by Dr. Derya Akkaynak and 
Dr. Tali Treibitz at the University of Haifa uses computer 
vision to remove these distortions. The Sea-thru algorithm 
works on raw images or videos taken under natural light. 
Without using a color chart or any information about the 
optical qualities or depth of the water, it reverses image 
distortions from the image pixel by pixel.  

Dr. Akkaynak used a technique called structure-from-
motion to create a distance (range) map by capturing 
multiple images of the same scene from slightly different 
angles, enabling the algorithm to estimate the distance 
between the camera and the object of interest. Once 
the algorithm has captured the distance, it estimates all 
the necessary parameters for removing the “fog” and 
restoring the image to its true colors.

Removing the

A coral reef in the Red Sea, Israel. Image credit:  

Matan Yuval, Marine Imaging Lab, University of Haifa 

from Underwater Images 
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MATLAB SPEAKS

With MATLAB® and Simulink®,  you can apply reinforcement 

learning to robotics, autonomous driving, and other 

systems. Quickly implement controllers and decision-

making algorithms, create deep neural network policies, 

and model the environment and reward signals. Use 

reference examples and tutorials to get started right away.

mathworks.com/reinforcementlearning
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