“, MathWorks:

Latest Features in MATLAB Coder

October 2014

R2014b

© 2013 The MathWorks, Inc.



Additional Code Generation Support

&\ MathWorks'
2014

Use 41 functions and System objects in MATLAB, Communications
System Toolbox, Computer Vision System Toolbox, DSP System
Toolbox, and Image Processing Toolbox

bboxOverlapRatio
bwdist

bwtraceboundary

comm. IQImbalanceCompensator

dsp.
dsp.
dsp.
dsp.
dsp.
dsp.
dsp.
dsp.
dsp.
dsp.

CICCompensationDecimator
CICCompensationInterpolator
FarrowRateConverter
FilterCascade

FIRDecimator

FIRHal fbandDecimator
FIRHalfbandInterpolator
PeakToPeak

PeakToRMS

PhaseExtractor

dsp.SampleRateConverter
dsp.StatelLevels
feof
fitgeotrans
frewind

histeqg

imadjust
imclearborder
imlincomb
Imgquantize
intlut
iptcheckmap
Igcoef2imbal

igimbalZcoef
ishermitian
issymmetric
medfilt?2
multithresh
ode23

odedb5
ordfilt?2
rgb2ycbcr
selectStrongestBbox
str2double
stretchlim

ycbcr2rgb

vision.DeployableVideoPlayer



4\ MathWorks

2014

Code Generation for Enumerated Types
Based on Built-In MATLAB Integer Types

Control base type of enumerations
for code generation

=  Use Int8, uint8, int16, uintl6 and
INt32 as enumeration types

= Reduce memory usage of
enumerated types

= Interface to legacy code or
match company standards

MATLAB

classdef(Enumeration) LEDcolor < int32
enumeration

GREEN(1),
RED(2)
end enum LEDcolor
end {
GREEN = 1,
RED
¥
typedef enum LEDcolor LEDcolor;

classdef(Enumeration) LEDcolor < intilé
enumeration
GREEN(1),
RED(2)
end

end typedef short LEDcolor;

#define GREEN ((LEDcolor)1)
#define RED ((LEDcolor)2)

C 3



&\ MathWorks'

Code Generation for Function Handles 20

In Structures

Invoke functions indirectly and parameterize operations
that you repeat frequently

= Define handles that reference user-defined functions
and built-in functions supported for code generation

= Define function handles as scalar values
= Define structures that contain function handles

= Pass function handles as arguments to other
functions (excluding extrinsic functions)



4\ MathWorks'

For Use with Embedded Coder



4\ MathWorks

ARM Cortex-A Optimized Code for 2ok

System Objects

Replace System objects with persistent h;
: : : it isempty(h)
NEON_OptImlzed funCtlonS for h = dsp.FIRFilter( 'Numerator', firl(63, 8.33));

ARM Cortex-A cores end

y1l = step(h, ul);

= Use 13 System objects including:

— dsp.FIRFilter, dsp.FFT, dsp.IFFT,
dsp.CICCompensationInterpolator,
dsp.DigitalUpConverter,

dsp.DigitalDownConverter

A* System cbject Outputs function: dsp.FIRFilter */

NN R AR R s Tlals] | Lok —>cS5FunCbject .5, &U0[0], &b wl[0], T&U);

=  ARM Cortex-A Code Replacement Library
supports Nel0 functions such as:
— nelO fir init float (),
nelO:fft:c2c_Id_float32_neon(),

nel0 fir interpolate float neon(),
nel0 fir decimate float neon()

Detailed listing here

» verifyFIRfilteronARMCortexAprocessorMLworkflow 6


http://www.mathworks.com/help/supportpkg/armcortexadst/ug/ne10-conditions-for-dsp-system-objects-to-support-arm-cortex-a.html

Multiple Entry Point Support for
Software-in-the-Loop (SIL) Execution

SIL/PIL verification for code libraries
generated from multiple entry-point functions

4\ MathWorks
2014

w ~J oy o W N

sil config = coder.config('lib'");

sil config.VerificationMode = 'SIL';

codegen('-config', sil config, foo, '-args', 3, bar, '—-args',

foo sil('foo',3);
foo sil('bar',6);

4, '"—-report');




&\ MathWorks'

Execution Time Profiling Using SIL/PIL o

Execution

Use execution time profile to check whether
your code runs within the required time on your
target hardware

= \iew and compare p|OtS of Code Execution Profiling Report for kalman01

The code execution profiling report provides metrics based on data collected from a SIL or PIL execution.

fu n Ctl 0 n exe C utl 0 n tl m e S Execution times are calculated from data recorded by instrumentation probes added to the SIL or PIL test harness or

inside the code generated for each component. See Code Execution Profiling for more information.
1. Summary

Total time (seconds x 1e-09) 2206501
("Units', 'Seconds', 'ScaleFactor', '1e-09",

= Access and analyze execution
. i "NumericFormat', '%00.0f")
tl m e p rOfI | I n g d ata Timer frequency (ticks per second) 3.06e+09

Profiling data created 01-Apr-2014 10:21:25

Measured time display options

2. Profiled Sections of Code

| ] Exe C uti O n ti m eS Cal C u I ate d fro m Section Maximum Average Maximum Average  Calls

Execution Execution Self Time Self Time
Time Time

data Obtalned through kalman01 initialize 1076 1076 1076 1076 1 HE
Instrumentatlon prObeS added to kalman01 | 16009 7351 16009 7351 300 |§|

kalmanO1 terminate 138 138 138 138 1 HE
SIL or PIL test harness




4\ MathWorks'

R2014b

Processor-in-the-Loop (PIL) Verification

Verify numerical behavior of
generated code on target
processor

Cross-compile generated code
and execute object code on
target processor or instruction
set simulator

Reuse MATLAB-based test
cases to exercise generated
code on connected hardware

4\ MATLAB Coder: C/C++ Static Libmwlb‘ﬂg

File Edit Project Debug Window Help

Ed kalman_filter.prj - ® &

Overview | Build ‘

-]

Output file: |kalmanfilter
Output type: | C/C++ Static Library =

Generate code only

More settings

Processaor-in-the-Loop Verification (2]

Verify numerical behavior of generated source code
through processor-in-the-loop execution.
- (=)

Test file: B test01_ui.m
| Redirect entry-point calls to static library

l) Run
k

11

=

-




4\ MathWorks'

For Use with Fixed-Point Designer

10



&\ MathWorks:

Fixed-Point Converter App for Automated
Conversion of Floating-Point MATLAB Code

Standalone Ul enables automatic conversion of MATLAB code to
fixed pOint Live editor for

easy design
= Run test benches  modification

and/or code snippetsS t0  recymmm =
autodefine input types
or manually specify
input types.

13 Convert to Fixed Point tect Ranges | v} (@ compute Derived Ranges| +]

Code popupsi|for

-’l(.’l
jé ‘ riaiymntB(subsanple_by_2(u,Ir.lc) )3 Varlable and
) ) b t 21 [originalype: expression
= Iteratively refine - annotations
1 t 'th Proposed Type: | numerictype(0, S, 0)
n u m e rIC ypes WI 3 0 [ Rounding Method: |Floor
H H H 1CK = ™ overflow Action: | wi
SI m u | a.tl O nS an d d e rlved i 3 subsample_by 2_hdl_wrappe Z; i = =L
TRT ¢ prmngiaeyaion | | AR
ranges before building s dratryver £ .
. 3 zu samz:::g:i:::::i‘:aa:}—pr: Type Validation Output - Vaniables
an d teStI n g th e #) subsample_by_2_hdl_float_m Variable Type Sim Min Sim Max | Static Min | Static Max | Whole Nu.., Proposed Type |
4] subsample_by_2_hdl wrappe 4 Input B
b uint8 1 133 Yes numerictype(0, 8, 0)
CO nve rte d CO d e . Ic uint8 7 7 Yes numerictype(0, 3, 0)
Ir uint8 19 19 Yes numerictype(0, 5, 0) ||
y o 1 x:128 uint8 ] 133 Y numerictype(0, 8, 0)
(s ]| 4 Persister
I dnuble 1 7 Yes numerictvae(0, 3. 0) LY

= Works outside of o
Integrated editor for simultaneously
MATLAB and HDL viewing source files and generated
Coder workflows artifacts 1



Automated Fixed-Point Conversion for
Commonly Used DSP System objects

4\ MathWorks

Propose and apply fixed-point data types for some System
objects based on simulation range data

Enable conversion of the following

DSP System Toolbox System objects

to fixed point using the Fixed-Point
Converter app:

= dsp.BiquadFilter

= dsp.FIRFilter, direct form only

= dsp.FIRRateConverter

= dsp.LowerTriangularSolver

= dsp.UpperTriangularSolver

= dsp.ArrayVectorAdder

|z Fived-Point Converter - UseCase.prj

Source Code =
£] UseCased

>> UseCasel tb

1 function y = UseCasel

Z

3 a=[-13;24];

4 v =[-11];

5 h = dsp.ArrayVectorAdder ('FullPrecisionOverride', false
3 'AccumulatorDatalype', 'Custom', 'CutputDataType', 'Custom'});
7 y = step(h, a, v);

8

9 al = [-10.5 13; -12.25 14.75]:

10 vl = [-10.25 11.5];

11 iy

1z

13

14

15

16

17

18 d

Simulation Qutput | Variables | Function Replacements

Variable

¥

al
h.CustarndecumulatorDataType
h.CustarnOutputDataType
hL.CustornAccurnulatorData Type
hl.CustomQutputDataType

vl

Type

22 double

220 double
22 double

1x2 double
1z double

2014

ax Whole Number Proposed Type

No numerictype(l, 16, 10)
Yes numerictype(l, 4, 1)
No numerictype(1, 1, 11)
Yes numerictype(l, 4, 1)
Yes numerictype(l, 4, 1)
No numerictype(l, 28, 22)
Na numerictype(l, 26, 22)
Ves

Na

nurnetictypedl, 2, 0)
numerictype(l, 16, 1)

(.
(

12



