

Rapid Prototyping of a Computer Vision Stack for AD using MATLAB/Simulink

Dr. Roxana Florescu & Alexandru Puscasu & Dr. Stephan Kirstein

www.continental-corporation.com Autonomous Mobility (AM)

Driverless Driving Activities

Truck:

- Highway
- Hub to hub

RoboTaxi:

Inner city

Valet Parking:

Parking garage

Sensor Technologies: Camera, Radar, Lidar, Ultrasonic, IMU

- Different Al teams use different toolkits:
 - Many different libraries needed
 - Potentially many version conflicts
 - Often docker containers used
- Open Neural Network Exchange
 - Established standard
 - Opset defines supported layers
- Target of MATLAB prototype:
 - Deployment of networks into vehicle:
 - Image acquisition
 - Preprocessing
 - Network inference on GPU
 - Postprocessing
 - Low number of dependencies
 - C/C++ Code generation

Tool Chain

- Video files
- Live camera data
- Measurements

Computer Vision Pipeline Implemented in MATLAB

SS3D Network

Deploying on Different Platforms

- One MATLAB pipeline different deployments:
 - CPU vs. GPU
 - Differences in results
 - Differences in runtime
 - MATLAB vs. C/C++ code generation
 - Embedded Platform (Nvidia AGX)
 - Offline/Live data
- Target:
 - C/C++ with GPU support

Deploying on Different Platforms

L CPU

- Input Image Stream:
 - Offline image stream (video/eCAL)
 - Live Image Stream
- Hardware Details: Intel Xeon Gold 6132 CPU @2.6GHz 2 x 14 Cores

II. GPU

- Input Image Stream:
 - Offline image stream (video/eCAL)
 - Live Image Stream
- Hardware Details: NVIDIA RTX 2080 Ti 1350 MHz

III. Dedicated HW

- Input Image Stream:
 - Offline image stream (video/eCAL)
- Hardware Details: NVIDIA AGX Board

Results CPU vs. GPU

Results on Live Camera Stream (GPU)

Inference Time Comparison

Hardware	MATLAB Code		C++ Code	
#Run	CPU [ms]	GPU [ms]	CPU [ms]	GPU [ms]
1	299.4	58.4	290.056	29.170
2	290.5	65.8	289.359	29.411
3	275.5	59.1	288.077	29.379
4	277.5	58.7	273.604	29.726
5	308.1	59.6	301.058	29.468
Overall Average Time	290.2	60.32	288.430	29.43

Results on Nvidia AGX

- Nvidia AGX
 - ARM64 cores
 - Restricted GPU
- 6-7 frames/s possible with cuDNN

Summary

- ONNX + MATLAB/Simulink enables deployment of several CNNs to target hardware
 - Fastes inference time with C/C++ Code generation
 - Comfortable switch between different targets (CPU/GPU/Embedded)
 - MATLAB support helped to overcome challenges
 - Suggestion of alternative functions
 - Missing CNN operations added
- Suggestions:
 - MATLAB or specific ONNX Opsets aren't supporting all CNN operations (<u>Link</u>)
 - Code generation: some functions still missing (for pre-/postprocessing)
 - GMSL camera needed for Nvidia AGX → only offline tests
 - GigE camera grabbing with large time variation → another C/C++ API used

Thank you for the attention!

eCAL Architecture overview

