Design of vehicle platooning controller with V2V communication

October 20, 2022 | Stuttgart

Advait Valluri

What will you learn today?

- How you can develop end-to-end multi-domain systems using MATLAB & Simulink, with platooning and V2V as example
- Understand how to customize components to various level of complexity
- Use realistic 3D environments to enable sensor modelling (perception, tracking) and algorithm development
- Leverage the power of virtual development to identify problems early before physical prototyping

What is platooning?

- Platoon is a group of (autonomous) vehicles moving behind each other, being led by a lead vehicle dictating the motion of the entire group.
- It can reduce fuel consumption, emissions and improve traffic flow, safety.

What is V2V? How does V2V work?

- Vehicle-to-vehicle (V2V) communication
 - enables wireless exchange of safety information of surrounding vehicles
- V2V communications systems
 - use Dedicated Short-Range Communication (DSRC) or Cellular Network

to exchange messages containing vehicle information (e.g., vehicle's speed, heading, braking status).

Design of vehicle platooning controller with V2V communication

Platooning Controller example

Simulink Control DesignTM Model-Based PID Controller Tuning

R2021b

V2V example

Platooning with V2V

Automated Driving Toolbox[™]

Simulation of vehicle platooning controller with V2V communication

Platooning: components

Information flow via V2V

 Obtains the position and movement information of the other vehicles in the platoon via V2V

Distributed controller

- Sliding mode control: every controller share the same structure and parameters
- Constant spacing: every car maintains a constant spacing from the preceding car

Vehicle model

- Truck-trailer kinematic model
- A single track 3DOF rigid vehicle body (bicycle model)

Platooning: problem statement

Problem setup:

- A given acceleration profile drives the lead vehicle
- Every trailing vehicle is controlled by a controller based on the position and movement information of the other vehicles in the platoon

Requirement:

- Define spacing error: $\varepsilon_i = L_i (x_{i-1} x_i)$
- Individual stability
 - ε_i → 0 : spacing error goes to zero if predecessor maintains constant speed.
- String stability
 - spacing error does not amplify downstream.

where L_i is the desired spacing that includes the vehicle length.

Controller with sliding mode control

$$a_{ego} = C_1 a_{lead} + (1 - C_1) a_{front} - K_1 (v_{ego} - v_{lead}) - K_2 (x_{ego} - x_{front} + L)$$

Trade off between lead car and preceding car

$$C_1 a_{lead} + (1 - C_1) a_{front}$$

Ego velocity will converge to lead velocity

$$-K_1(v_{ego}-v_{lead})$$

Spacing error will converge to zero

$$-K_2(x_{ego}-x_{front}+L)$$

Simulink Control Design™

Platooning

Open Live Script

For more details

Design Controller for Vehicle

Tune spacing controller for trailing

Basic Safety Message (BSM) by SAE J2735

- SAE J2735 Data and message set dictionary
- Defines the Basic Safety
 Message (BSM)
 - Latitude, longitude, Elev
 - Speed
 - Heading angle
 - Steering wheel angle
 - Lat, long acceleration
 - Vehicle length, width


```
BSMcoreData ::=
                SEQUENCE {
msqCnt
               MsqCount,
id
               TemporaryID,
secMark
               DSecond,
lat
               Latitude,
long
               Longitude,
elev
               Elevation,
               Positional Accuracy,
accuracy
transmission
               TransmissionState,
speed
               Speed,
heading
               Heading,
angle
               SteeringWheelAngle,
accelSet
               AccelerationSet4Way,
brakes
               BrakeSystemStatus,
size
               VehicleSize
```

For more details

Automated Driving Toolbox™

Design V2V Transmitter and Receiver

Simulation result (with initial setting of controller gains)

Simulation result (after tuning K2 for faster response)

Simulation result (after tuning K2 for faster response)

Simulation result (before vs. after tuning K2 for faster response)

Simulation result (With a single track 3DOF rigid vehicle body - bicycle model)

Key takeaways:

Design of vehicle platooning controller with V2V communication

- Demonstrated how to design a vehicle platooning controller with V2V communication using
 - Simulink Control DesignTM
 - Automated Driving ToolboxTM
- The test bench model consists of
 - V2V communication
 - Model characteristics of the V2V communication channel
 - Implement BSM defined by SAE J2735
 - Vehicle model
 - Truck-trailer kinematic model
 - A single track 3DOF rigid vehicle body (bicycle model)
 - Distributed controller implementing sliding mode control

Simulink Control Design™ Automated Driving Toolbox™

Further studies

Scenario authoring using RoadRunner Scenario with truck and trailer meshes

- High fidelity 6 DOF model of a two-axle tractor towing one axle trailer
- Lateral control for curved roads (use Lane keeping control)

Design of vehicle platooning with lateral control and V2V communication

Design of vehicle platooning controller with V2V communication

October 20, 2022 | Stuttgart

Advait Valluri

- Platooning longitudinal control
- Truck-trailer kinematic model
- V2V communication

R2022b

- Platooning longitudinal control
- High fidelity Three-Axle Tractor Towing Three-Axle Trailer
- V2V communication

Future Release

- Lateral Control using LKA MPC controller
- Truck-trailer linearized lateral dynamics model
- UE visualization

- Lateral Control using LKA MPC controller
 - Truck-trailer linearized lateral dynamics model
- Scenario authoring using RRS
- UE visualization
- Command acceleration generation depending on road curvatures
- V2V communication

What will you learn today?

- How you can develop end-to-end multi-domain systems using MATLAB & Simulink, with platooning and V2V as example
- Understand how to customize components to various level of complexity
- Use realistic 3D environments to enable sensor modelling (perception, tracking) and algorithm development
- Leverage the power of virtual development to identify
 problems early before physical prototyping

