

GEEDS - Group Electronics Expertise and Development Services

Live Debugging of Stateflow Charts While Running on ECU

Amjad Elshenawy & Mohammad Raouf

Mathworks Automotive Conference 2015 Stuttgart, Sep., 24th 2015

September 2015

Table of contents

Testing in Model Based Design

- What happens if a test case fails?
- How to debug in X-In-the-Loop testing?
- How to debug on Vehicle?

Debugging in Model-In-the-Loop (MIL) Testing

Simulink Blocks

- Signal Analysis
 - Scopes and Signal Viewers
 - Signal Logging
 - etc ...

Stateflow Charts

- Stateflow Chart Animation
- Stateflow Breakpoints and Watch Data

Debugging in Software-In-the-Loop (SIL) & Processor-In-the-Loop (PIL) Testing

Simulink Blocks

- Signal Analysis
 - Scopes and Signal Viewers
 - Signal Logging
 - etc ...

Some Limitations Exist for

internal Signal Logging

Stateflow Charts

- Stateflow Chart Animation in "External Mode"
 - Chart local data can be viewed on signal viewers by designating them to be test points

● ● ■ ✓ •	inf External •
Connect To Target	
fourr=0; omega=0.} powerOff du: % Derivatives curr_dot = idotCalc(0, curr,omega); omega_dot = wdotCalc(curr,omega); % Outout	powerOn
function der = idotCalc(volts,i,w) {der=-R/L.*i - Kb/L.*w + 1.0/L*	% Output omega_out=omega; % Output omega_out=omega; volts } [unction der = wdotCalc(i,w) (der=Km/J.*i- Kf/J.*w)

Design phase

- Identify debugging variables
- Declare debugging variables as "Global Variables" (they will have Fixed Memory Address)

Validation phase

September 2015 7

Simulink Blocks

Data acquisition and signal plotting

Manually create a debugging variable representing chart states

Stateflow Charts – The Classic	al Way	
Visualize the value of the state va	riable using the	e test tool
Run the test case and monitor the	e state variable	Name Acq. Value Unit Oil stActrTstBB1 ✓ – – Oil bActrTstInProgsBB1 ✓ – bool Oil bBlowBy1ReqActrTst ✓ – bool
BigOnAll:version 35.0.0 File Communication Mode Display Tools ? Script: Display Tools ? Automatic saving * #/initialisation 00000000 Initcan 00000033 Wait : 10 03 wait 100 0000033 Wait : 100 send 10 03 00000134 Tx : 22 F1 86 wait 1000 0000135 Wait : 1000 send 31 01 DF E9 01 0000135 Wait : 1000 0000136 Tx : 31 02 DF E9 01 0000136 Wait : 1000 00002136 Tx : 31 02 DF E9 01 0000138 Stop Communication 00002138 Stop Communication * Wait 100 * Ready Protocol: CAN Vector [Ln1, Col1		NameAcq.ValueUnitOilstActrTstBB1✓2.00-OilbActrTstInProgsBB1✓✓boolOilbBlowBy1ReqActrTst✓✓bool

Stateflow Charts – The Classical Way

- Drawbacks of the Classical Way of Debugging Stateflow Charts
 - Manually Define State Variables
 - Extra development effort is required
 - Additional memory consumption
- Poor Visualization of Statecharts; No Statechart Animation
- Isn't there a better way to debug Stateflow charts running on ECU?
 - Valeo solution with visualization and animation of Stateflow models based on "Simulink External Mode" will be presented

Overview of Simulink External Mode

- In "External Mode", Simulink algorithm is executed outside Simulink environment. Simulink is merely a GUI for:
 - Visualizing Data
 - Acquiring Signals
 - Tuning Parameters (Provided that parameters are not inlined)

Configure Code Generation in External Mode

• In the model «Code Generation» configuration, configure:

- « System target file » as « ert.tlc »
- « Interface » as « External Mode »
- « Transport Layer » as « tcpip » or « RS-232 (serial) »

Interface: External mode	
Host/Target interface	
Transport layer: tcpip MEX-file name: ext_comm	
MEX-file arguments:	
Memory management	
Static memory allocation	

Steps to start External Mode communication

External Mode Remarks

External mode uses "Code Instrumentation"

- Includes extra header files
- Adds code for data exchange and for transport layer
- Adds extra variables
- ERT supports only two transport layers, namely, TCP/IP and RS-232 (serial).
 No direct support for automotive communication protocols.

Valeo Solution in Details

• To prepare environment, 3 steps are needed

Model State info on ECU

 Use Embedded Coder (ert.tlc) to generate a Global structure "DW_<modelName>", containing active state of each state machine.

```
typedef struct {
....
uint8_T is_StateChart_1;
uint8_T is_StateChart_2;
uint8_T is_StateChart_3;
uint8_T is_StateChart_4;
....
} DW_<modelName>;
```


/* ... */

/* ... */

/* ... */

/* ... */

No need for code instrumentation on Target !

1st Step: Exchanging Model States Info from ECU to PC

Add XCP/CCP and CAN drivers on laptop

Configure reception of data in Valeo Tool

2nd Step: Exchange Received States Info to Simulink Model

Modify generated External-Mode files:

2nd Step: Exchange Received States Info to Simulink Model

Modifications in details:

- Comments all direct assignation to the states values
- Generates additional C files that directly update the states value with the values received from ECU

/* Entry: ActrTstBlowBy/F02_BlowBy2Tst/F01_BlowBy2TstChart */

'OIL ACTRTEST BB2 IDLE': '<S8>:1' */

- /* ValeoTool Comment: ActrTstBlowBy_AUTOCODE_DWork.is_active_c1_ActrTstBlowBy_AUTO = 1U: */
- /* Entry Internal: ActrTstBlowBy/F02 BlowBy2Tst/F01 BlowBy2TstChart */
- /* Transition: '<S8>:10' */

* En

CAN Driver

Modified

External-Mode

👽 / CCP Driv

Stateflow

Oil_stActrTstBB2 = OIL_ACTRTEST_BB2_IDLE;

108

96

61

3rd Step: Final Setup

Generate executable "Simulink-to-ECU Communication":

Then, launch Stateflow Debugging Activity

Conclusion

 Using "Simulink External Mode", and with our in-house tool, we were able to read Statechart information in real-time from the ECU and accordingly animate Stateflow charts on PC.

- This technique facilitates a lot debugging of Statecharts for on-vehicle tests.
- Next step is to support FlexRay and LIN communication protocols.

Automotive technology, naturally