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1. Introduction
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Challenge

e Calibration of hybrid electric vehicles (electrified powertrains) is a challenging task

e Complexity of the task is increased
— Scale (large number of calibration constants)
— Interdependency of these calibration constants
— Calibrating to cater multiple competing attributes
— Different regulatory requirements

— Multiple vehicle programs and different variations of each program
e This attempt requires

— Many prototypes

— Engineering + lab time

— Substantial cost

e Could we use new Al/ML techniques to mathematically optimize calibration
constants for complex electro-mechanical systems?
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Goals of MBCO Studies
« Math-based framework l Calibration Engineers l [ Calibration Tools ] l Prototypes + Test Lab l

for cal. development
« Better understanding
of system behavior
 Reduce | | | .
= Engineering time
= Tools needed
= Prototypes
= Testing time

 Frame cal. development

l Machine Learning l as a mathematical
- J ik '.. m " . & 8
{ ] ( - i‘ | .

optimization problem

« Generate alarge data set
with simulations

* Analytics/insight into
complex system behavior
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2. Optimization Workflow
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Model Based Cal. Optimization (MBCO) Ecosystem
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In-house developed eco-system which utilizes Genetic
Algorithms for optimization

1.
2.
3.

o

Design tables from modeFrontier software
Simulink based SiL Model

Cost-effective parallel computing license
(PCT/MDCS)

Simulations run inside Ford HPC

Results Reported back to MBCO Ecosystem
Post processed results reported to the
Genetic Algorithms

Data Analytics and Deployment
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Calibration Optimization Workflow
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2.1 Selection of Machine Learning Algorithms
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Calibration Optimization Workflow
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Al vs ML vs DL

~ — — — — ARTIFICIAL INTELLIGENCE

%)

~ A technique which enables machines
Artificial Intelligence e ~ to mimic human behaviour
& -
Machine Learning
MACHINE LEARNING
—————————— Subset of Al technique which use . .

statistical methods to enable machines Machine Learning
to improve with experience

|

[ Supervised Learning ] [ Unsupervised Learning ] [ Reinforcement Learning ]

>~ " DEEP LEARNING
N~ — —— Subset of ML which make the "
computation of multi-layer neural ; - ; ’
network feasible [ Classification ] [ Regression ] [ Clustering ] [ Decision Making ]
r',-Naive Bayes N (f-LinearREgressiDn\ /:Kl'-.ﬂ Clusteri 1\ 4 )
Classifier = Neural Network -Wieans - ILStenng
o . = Mean-shift
= Decision Trees Regression Clusteri
= Support Vector = Support Vector Ustering ) = Q-Learning
i . = DBSCAN Clustering =R L ;
Machines Regression = Al ti earning
= Random Forest = Decision Tree Hﬁgg DrPT.E rT Ve *TD Learning
=K — Nearest Regression Cl'f;ta;fm“:a
Neighbors =LassoRegression g
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Selection of Machine Learning Algorithms

Electrified vehicles are complex electro-mechanical systems
— Sophisticated control systems in multiple control modules
— Control system could be calibrated to achieve different attributes
e Makes calibration process complex and time intensive
— Large number of individual calibration constants in one controller only

— Interconnected 3D tables

e Infinite number of calibration combinations
. . . . . Eyqlutipnary algq_r_ith_m
e Need to run large number of simulations to find mathematical global optimum s

Cultural algorithm - Differential evolution -
. . . . . . Effective fitness - Evolutionary computation -
[ ] H g h f d I ty d I —_— h g h p t t t Evolution strategy - Gaussian adaptation -
I I e I m O e S I e r CO m u a I O n I m e Evolutionary multimodal optimization -
Particle swarm optimization -
Memetic algorithm - Natural evolution strategy
- Neuroevolution -
Promoter based genetic algorithm -
Spiral optimization algorithm -

e ML Algorithm should be able to handle this scale Satmosing cod - Poymorpiic cote

Genetic algorithm

— Run evaluations as batches (for parallelization) Cc"”m?'tim'dsflnif‘m
e Genetic Algorithms (subset of Evolutionary Algorithms) was selected Geneteprogranmng

Cartesian genetic programming -
Linear genetic programming -
Grammatical evolution -

Multi expression programming -
Genetic Improvement - Schema - Eurisko -
Parity benchmark

v-T-E
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Application of GA to Calibration Optimization

e Let us consider one example calibration table

e Different calibration values in this table yields different fuel economies for the vehicle
e We treat single combination of this table as an individual in a population
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Application of GA to Ford Calibration Optimization

Initial Population Next Generation Evaluation * New Population

, Elite Child ‘
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2.2 Development of Customized/Intermediate Algorithms
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Calibration Optimization Workflow

[Genetic AIgorithmsJ I:I)
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Study Specific Intermediate Algorithms and Constraints

Presented before was an 8x8 (64 element) table

N
e 10 of similar tables are included in one study
— ~640 elements N T |
— 640 DOF eeEeees
e Application specific, special “Intermediate Algorithms" are needed to SRR aES
— Reduce this dimensionality
— Couple calibration tables to GA
— Maintain shape factors / constraints
e GA algorithm suggests a “statistical — black box” table
e Constraints may have to be applied to make them feasible in reality

— GAs handle the problem as a black box optimization

— Without physics or constraints

— Constraints application make them production ready
¥ Basetable
Perturbed table (a)

© Projected table (b)
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2.3 Finding Computing Resources to Run Parallel Simulations
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Calibration Optimization Workflow
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Computing Resources

* Need a cost-effective computing resource to run optimization studies
Distributed Computing

HPC Online Clusters Local Cluster (Unused CPUs)
Ford Internal Pay per Use MATLAB DCS/Other SW

%%% amazon EC2 WG e

e Ford Central HPC is selected
— Data security

— Cost effectiveness " .. & RedHat
Simulink Madel - Windows Simulink Model - Linux
. . . . . |I Il
e Challenges with scaling up (512 parallel jobs in Linux HPC) il P oolersfean
— Windows to Linux recompilation needed \
e Ford Central HPC runs on Linux OS Plant Model JTransmission Plant Model §Transmission
. . . (Dymola (AMESIM (Dymola (AMESIM
— License requirements for co-sim/model exchange components SFunction)  [SFunction) sFunction) | SFunction]

— Compilation compatibility of certain source codes
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2.4 Data Analytics and Deployment to Internal Partners (Calibration Engineers)
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Calibration Optimization Workflow

4 )
Closed-Loop EVV Sim
Genetic Algorithms |:> |:> In a Cluster Computer
(~512 Parallel Jobs in HPC)
- J

2\ B

] Obijective(s) <:| Results ¢
Calculation Post Processing

Data Analytics (Information Generation) Deployed to Calibration Engineers
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Data Analytics

e Mechanism to deliver the information/knowledge to calibration engineers
— Statistical Analysis
— Physics based time domain analysis

e Typical MBCO study will generate ~250+ GB worth of data

— ~10,000+ different calibrations
— Best calibration (1) Vs everything (~10,000+) as a source of information

e Data-Analtics, |nformation

e Collaboration with calibration engineers e

— Reusing existing tools
. INFORMATION
— Developing new tools/processes

e |n-house development with MATLAB + other tools
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2.5 System Level Integration of all Components with MBCO Ecosystem
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Current MBCO Ecosystem Capabilities

e Running Multi Objective (Attributes) — Multi Constraint Optimization
— Using DOEs or Genetic Algorithms

e Scalable for Parallel Computing of Simulink Jobs :
— 1 CPU (Sequential) ina PCto up to 512 CPUs in Parallel Cluster Computing ‘

o ==
e Time Capability Comparison ‘!.,j wode FRONTIER =l éeéé
— 8000 CAE Simulations (3.5 Hours per each simulation) — — = &
— Sequential computing needs 28000+ hours . f —— J = — “:-’:"“"“m
— Completed in 96 hours with 400 parallel processes = ik

— Physical testing would need ~30+ years

28000 _ 591 7 2

Parallelization Overhead + Data Transfer
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3. Sample Study Results

30 April 2024 Shehan Haputhanthri and Indika Wijayasinghe




e This study was carried out to maximize the fuel economy of one of our xEV program

e 4 tables were included as calibration constants
— 4-12x17, 25x9, 25x17, 12x17 2D tables

e 553 elements (~553 DOF)

e Coupled to GA via an “intermediate algorithm”
— To reduce dimensionality
— Maintain shaper factors / impose constraints
— DOF was reduced to 121 from 553

e 8750 different calibrations were suggested by GAs and evaluated
— Population size — 350
— Populations - 25
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8752x12 cell

1 2 3 4 5 ] 7 2 9 10 11 12
1 'DesignID’ ‘'table_1' ‘table_2' ‘table_3' ‘table_4' 'table_5' ‘table_g' ‘ohjective_1' |'output_2' ‘output_3' 'output_4' ‘output_3'
2 'Base' Tx1 struct 1x71 struct Tx7 struct Tl struct Tx1 struct Tx71 struct 0 0 ] 0 0
3 (0 12677 wint16 | 259 uimt16 2517 wint16 | 12¢717 vint16 | 259 uwint16 | 25x17 wint16 [11.2027 0.7835 63 65 33.4463
4 N1 12617 uint16 |29 uint16 (2517 wint 16 | 1277 vint16 |25x% wint16  |25x17 wintla [13.9941 0.7836 B3 65 50.6642
5 |2 12617 uint16 | 259 uimt16 | 25x17 wint16 |12%17 uint16 | 25x9 wint16 11.34m N.7855 RS RS 53.303R
6 3 12¢17 Uint16 | 25x9 wint 16 2517 wint16 | 12%17 uint16 |25x0 wint16 1 o Design ID (Column #1) Vs objective_1 (Column #8) from D:\GITIMBCO_Ecosystem_MBCO476\UsedModelPackages’ \test.mat)
7 |4 1217 wint16 (25 Quint16 |25 17 uint16 | 12%717 uint16 | 25xQ uint16 1
& 5 12617 uint16 | 25xQ uint16  |25x1F wint16 [12x17 vint16 |25x9 wint 16 1
9 6 ¢ 259 uint 16 LI
10 7 2o uint 16 1 °
11 |8 25x9 uint16 1
12 (9 250 wint 16 1
13 [10 2o uint 16 1
14 N 25x9 uint16 1
15 |12 250 wint 16 1
16 13 259 uint 16 1%
17 14 25 uint 16 15
18 15 25 uint 16 15
19 16 259 uint 16 18
20 17 250 uint 16 1%
21 18 259 uint16 13

o 1000 2000 3000 4000 5000 6000 7000 8000 9000
Design ID Values (Column # 1)
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Data Analysis and Deployment

e Objective is to provide insight for calibration engineers
e (Questions to answer:
— What regions of the calibration tables provide opportunity for improvement?
— What are the requirements for optimality?
— How robust are the calibrations?
— Is the path to optimality unique or can it be achieved in multiple ways?
e These questions are answered using statistical/ML methods
e Methods:
— Statistical significance tests to identify the regions of the tables modified by the optimization process
— Provide requirements for optimality and robustness in terms of a confidence interval using the top x% results
— Sensitivity analysis to identify important regions of the calibration tables
— Clustering methods to identify different paths for improvements

e Many of these same methods are used to identify how the optimal calibrations achieve the optimality by
analyzing how the calibrations are linked to objective via intermediate performance indicators
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Table 3

Data Analysis and Deployment

Tabie 1
[ 11

e Heatmap showing the significant areas of
the calibration tables modified by the

optimization algorithm
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Data Analysis and Deployment

Sy = = * Distribution of top X% calibrations compared
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Data Analysis and Deployment

10.984

10.983

e C(Clustering to identify whether there are
multiple classes of calibration tables that
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Data Analysis and Deployment (In-Progress)

e

3 Hot Cycle Optimization

12,000 Designs . g,
]

|
6000 CPU hours in 15 Clock hours
512 Parallel Sims with MDCS

Vakses of Optmiation Desgs

Parallel Coordinate Plots

Multi Objective Optimization
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Deployed as a MATLAB Web App to Calibration Engineers
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4. Challenges
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Challenges

e Methodology

a} 1D - 4 regions

b} 2D - 16 regions

— Curse of dimensionality

— Effects of test vehicles and driver behavior variability
— Model limitations

— “Human practices Vs Mathematical concepts” gap

e Technical

e General

30 April 2024

— Going from limited production to full production

Iy

I

Simulink Model - Windows

— Converting Windows models to Linux (for HPC)

— Handling large amounts of data generated

Controllers

) 3D - 64 regions

Simulink Model - Linux

CAN Controllers CAN
[ECUs) SFunctions (ECUs) SFunctions
Plant Model fTransmission Plant Model | Transmission
(Dymola (AMESIM (Dymola (AMESIM
SFunction) SFunction) SFunction) SFunction)




Key Takeaways

e Objective is to assist calibration engineers with —
model-based optimization studies in a scale that's T
not possible with test vehicles

e MBCO Ecosystem was built to facilitate this goal
by making use of the MDCS, Ford internal HPC
clusters and modeFrontier

WISDOM

e Powertrain calibration is posed as a mathematical
optimization problem and addressed via a
Genetic algorithm combined with intermediate
algorithms

KNOWLEDGE

INFORMATION

e Analysis wizards were created to generate
insights based on optimization results to assist
calibration tasks

e Current pilot studies are being successfully
carried out with the intention of full deployment
soon
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