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EV Trends in Automotive

Global light vehicle production forecast, 2021-30
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Source : https://www.bcg.com/publications/2021/why-evs-need-to-accelerate-their-market-penetration

Areas of focus for EV vehicle performance

— Longitudinal dynamics

Energy optimization of multiple motors B
— Lateral dynamics
- Stability control

- Torque vectoring
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Early Virtual Vehicle Development

Companies are deepening virtual development

— Increasing reliance on system-level simulation
for development

— Reducing scope of physical prototypes towards
confirmation and final validation

— Focus on powertrain, vehicle dynamics and
ADAS / AD

Common challenges

Access to “right level”

fidelity models across
organization

Integration of both

physics and software
models

Virtual
Validation

Virtual
Prototyping

v

Virtual Integration

Deploying models to
users who aren’t tool
experts




Case Study: Integrated Chassis Control

Case Study: Intelligent integrated chassis control
(ICC)

— Coordinates multiple chassis actuators to improve
roll stability and vehicle performance

- Front and rear steering

- Multiple electric motors
— Multi-objective control

- Roall

- Lateral Velocity

- Yaw rate
— Multiple ways to meet targets

- How to dictate between actuators?
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Hierarchical MIMO Decoupling Control for Vehicle
Roll and Planar Motions With Control Allocation

Fengchen Wang ©, Member, IEEE, Yue Shi™_ and Yan Chen®, Member, IEEE

Abstraci—Although many methods of ground vehicle dynamics
control have been widely studied, their robustness against undesir-
able oscillatory coupling behaviors of planar and roll dynamics is
not fully explored. To address this issue, a hierarchical multiple-
input-multiple-output (MIMO) d I ller is proposed
in this study. Based on the hi hical control fi i
the coupled vehicle roll and plansr dynamics are resolved in the
high-level control, and a control allocation is utilized for tracking
control in the low-level control. The decoupled internal dynamics
and nominal stakility are then analyzed and proved. Moreover, by
using the \'zhichﬁaw rate and load transfer ratio, a control trigger
with dynamic weighting is designed to guarantee the feasibility of
the MIMO decoupling control and smooth control efforts. Through
the co-simulation between CarSim and MATLABR/Simulink, the
feasibility and effecti of the d ller are verified.

Index Terms—Decoupling control, feedback linearization,
stabilization, rollover, vehicle dynamics.

lateraliyaw instability and rollover usually happen on different
driving scenarios [9]. Hence, the control mode switching method
could be employed, in which the mode of vehicle dynamics
control is determined by rollover indexes [ 10]. Namely, once the
threshold of a rollover index is reached, the control objective
is switched from vehicle lateral/yaw stabilization to rollover
prevention. However, during some aggressive driving maneu-
vers, vehicle lateral/yaw stability and rollover prevention must
be simultaneously considered, even if their control objectives
may be conflicting.

To balance and compromise the conflicting control objectives,
one way is to take the advantages of over-actuated vehicle
systems. For instance, a hierarchical control framework with
control allocation (CA) was introduced in [11] to resolve the
conflicting issue explicitly. In a hierarchical configuration, the
virtual control inputs in the high level ensured vehicle lat-
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AUTOMOTIVE
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Electric Machine 1 Parameter Name Description Units Value
Electric Machine 2 1 |PIntVehMass Vehicle sprung mass with body fully equipped kg 1623
Energy Storage 2 | PIntVehDstCGFmtAxl | Longitudinal distance from sprung mass CM tof... m 1.09
Driver 3 | PIntVehDstCGRearAxl | Longitudinal distance from sprung mass CM tor... [m 17
Environment 4 |PIntVehCGHgtAxI Vertical distance from axle plane to sprung mas... |m 0.3




Plant Specifics/Modifications

Powertrain
— 2x 200kW Motor BEV

— 55kWh Battery

Steering

— Front axle: Steering wheel input with control
correction

— Rear Axle: Enabled by control only
Vehicle Dynamics

— 14 Degrees of Freedom (DOF)

— Magic Formula tires: 2 DOF

— Mass: 1600kg

Front Wheel and Brake
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Controller: Supervision
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Coordination Strategy

Supervision Strategy

Uses Lateral Load Transfer Ratio (LTR) to determine if control

IS activated

LTR represents the load transfer between the left and right
wheels and is an indicator of vehicle rollover
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F. Wang, Y. Shi and Y. Chen, "Hierarchical MIMO Decoupling Control for Vehicle Roll and Planar Motions With Control Allocation," in IEEE Transactions on Vehicular Technology, vol. 73, no. 1, pp. 494-503, Jan. 2024, doi: 10.1109/TVT.2023.3308577 7



Controller: High-Level Controller
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Coordination Strategy

High Level Controller

= MIMO decoupling controller
— Feedback decoupling on roll dynamics
- Yaw rate and lateral velocity
— Decoupling matrix for rest of vehicle dynamics

Outputs yaw moment, lateral and longitudinal forces
targets

Local Controllers

Control model decoupling

Nonlinear
coupled
vehicle

dynamics

F. Wang, Y. Shi and Y. Chen, "Hierarchical MIMO Decoupling Control for Vehicle Roll and Planar Motions With Control Allocation," in IEEE Transactions on Vehicular Technology, vol. 73, no. 1, pp. 494-503, Jan. 2024, doi: 10.1109/TVT.2023.3308577
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Controller: Control Allocation
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Local Controllers

Coordination Strategy

¥

Control Allocation

Distributes the high-level control command to the lower-level actuators
— Additional body longitudinal force (+/-)
— Front steer correction
— Rear steer
Uses optimization algorithm to solve for best way to distribute
commands
— Subject to actuator limits
— Provides flexibility for multiple control scenarios and vehicle architectures

F. Wang, Y. Shi and Y. Chen, "Hierarchical MIMO Decoupling Control for Vehicle Roll and Planar Motions With Control Allocation," in IEEE Transactions on Vehicular Technology, vol. 73, no. 1, pp. 494-503, Jan. 2024, doi: 10.1109/TVT.2023.3308577
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Controller: Local Controllers
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= Default controllers provided with Virtual Vehicle Composer model 6 b§
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F. Wang, Y. Shi and Y. Chen, "Hierarchical MIMO Decoupling Control for Vehicle Roll and Planar Motions With Control Allocation," in IEEE Transactions on Vehicular Technology, vol. 73, no. 1, pp. 494-503, Jan. 2024, doi: 10.1109/TVT.2023.3308577 10
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Testing Scenarios

Increasing Steer Double Lane Change

= Based on SAEJ266 = Based on ISO 3888

= Vehicle accelerates to target velocity (50 MPH) = Vehicle accelerates to target velocity (35 MPH)
and held

= Accelerator pedal is held
= Steering wheel is linearly increased until a max

angle is reach = Steering wheel is actuated to turn into left then
right lane

'
]
S
o
om<
823 g
A58
s® <
&
3

X Distance [m]

!
!
8
ons
853
S
33

w
(9]

w
o
o
Y
[

.
®
o)
o
o

5 0 5
Y Distance [m]

X Distance [m]
8

N

o
=
o

0 5 10 15
Y Distance Iml

11



Testing Scenarios
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Results

Coordinated control shows an improvement
for vehicle stability

— Front and rear steer work cohesively to
improve roll stability

Comprehensive index to evaluate
performance

— Measures the effect on LTR reduction and
error tracking

1 |LTR| lem|
Comp = = + ——
p 3\ max(|LTR|) 1max(leml)
m=

Roll angle and Comprehensive index shows
iImprovement for all tested scenarios

Control Reduces LTR

Increasing Steer
T T T

0.4

—~

LTR[-]

0.21

0

— O Of
——— | CC O

1 1
11 12 1

Coordinated Contro
Effort

-

ro

delta Fx[N]
)\

3 14 15 16 17 18 19
Time (seconds)

— delta Fx
m—— delta Steer - Front
= = = dglta Steer - Rear

10 11 12 13 14 15 16 17 18 19

Time (seconds)

Results

Double Lane Change Increasing Steer

N L CC Off | |

Fishhook

[ L CC Off

Roll Angle[deg]
o - [h%] w i

Double Lane Change Increasing Steer

" | Lcc on

Fishhook

MathWorks AUTOMOTIVE CONFERENCE 2024

delta Steer[rad]

13



| MathWorks AUTOMOTIVE CONFERENCE 2024

MathWorks Virtual Vehicle Offering Spans Development Process
Application Expertise + Engineering Tools for your needs

Integrate Author Simulate & Deploy
Software Scenarios Analyze Simulation

C/C++ Interface Scene & Scenarios Visualization Cloud Integration
Reduced Order Models Open Standards Data Analysis Datalake Integration
FMU Integration Drive Cycles Report Generation HIL Deployment

Caontroters

Value proposition:
¢MAT - = Proven tools for modeling of physics and software
= Reference applications for reduced time-to-simulation
#\0eep Learing NN = Common platform for model reuse

(:4;?, [ u] 'H = Solutions for large-scale modeling and simulation
; L s (2] H
LU SAadi C ] = Flexible platform for growth / new use cases

Hand C/C++ Code 14
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Key Take Aways

MathWorks tools can be used for
chassis control development
through the whole development
cycle

Virtual Vehicle Composer App
provides the framework for flexible
vehicle modeling and control
development

Integrated Chassis Control can be
used to coordinate multiple chassis
actuators for improved venhicle
performance, safety and comfort

ssssssssss
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Virtual
Validation

Virtual
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Virtual Integration
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