
[image:]
3
Table of Contents
1.	Course Description	1
2.	Course Overview	2
3.	Course Components	3
Educator Guide	3
Student Worksheets and Handouts	3
PowerPoint Presentation Template	3
Course Toolbox and Audio Library	3
4.	Classroom Requirements	3
5.	Setting Up Computers	4
Software	4
MATLAB Licenses	4
Download and Install MATLAB on local computer (preferred)	5
Use MATLAB Online	5
Installing Course Files	6
For MATLAB installed on local computer	7
For MATLAB Online	7
Increasing the font size on your computer for display	9
6.	Educational Standards	10
7.	Learning Goals	11
Day 1 Lesson Plan	12
Goals and Objectives	12
Day 1 Overview	13
Activity – Ice Breaker	14
Discussion – Overview of activities to be covered during the week	14
Discussion – Sound and Music	14
Group Activity – Music Has Rhythm and Volume	15
Activity – Sound is Made by Vibrating Air	17
Discussion – What is Programming?	19
Group Activity – Acting Out Programming	20
Activity – Using MATLAB to Visualize Sounds	22
Activity – Fun with MATLAB	25
Activity – Using MATLAB as a Calculator	26
Activity – Creating and Using Variables	27
PART A – Worksheet	28
PART B – Live Scripts and Variables	29
LUNCH	36
Activity – Customizing Your MATLAB	36
Discussion – Test Understanding of Variables	37
Activity – Shopping for our musical party	39
Part A – Task 1	39
Part B – Task 2	43
Part C – Task 3	49
Day 2 Lesson Plan	53
Goals and Objectives	53
Day 2 Overview	54
Activity – Indexing Quiz (review)	55
Lesson – Vector math review	59
Lesson – Saving Variables from Workspace	61
Lesson – Using Functions	62
Activity – Playing by numbers	65
Activity – Happy Birthday song	66
LUNCH	69
Group Activity – Composing a song	69
Lesson – Using 'for' loop	72
Activity – Practicing 'for' loops	78
Day 3 Lesson Plan	82
Goals and Objectives	82
Day 3 Overview	83
Activity – Adding tunable parameters to script	84
PART A – Revisiting loops	84
PART B – Creating tunable parameters	85
Activity – Script to function	86
Lesson – Using 'if' statements	91
Lesson – Figure Window and Callback Function	93
Activity – Keyboard Piano	100
LUNCH	104
Activity - Virtual Theremin	104
Activity – Customizing the Theremin	109
Day 4 Lesson Plan	112
Goals and Objectives	112
Day 4 Overview	113
Lesson – Importing sounds into MATLAB	114
Lesson – Editing sounds in MATLAB	116
Lesson – Creating a Sound File for Silence	118
Lesson – Concatenating Sound Files	120
Lesson – Adding Sound Files	122
LUNCH	125
Activity – Creating a Melody using Addition and Concatenation	125
Activity – Play with the Music Mixer App	129
Group Activity – Perform as a Band	132
Day 5 Lesson Plan	134
Goals and Objectives	134
Day 5 Overview	135
Activity – Creating a Music File of Your Own	136
LUNCH	137
Activity – Preparing for a Music Concert! (60+ minutes)	137
Activity – Wrap Up (30 minutes)	138
Appendix	141
Suggested Instructor Prework	141
Other Resources:	142
General troubleshooting tips	142

Table of Contents

[bookmark: _Toc9426441]Course Description
In the Bytes and Beats course, students will learn the fundamentals of programming with MATLAB while making their own music. They will use MATLAB, the programming language used by scientists and engineers, to turn if-statements, for-loops, and functions into rhythms, melodies, and harmonies.
Working with friends, students will compose and visualize their own music and invent their own symphonic creations. At the end of the course, students can take home their creations to continue fine-tuning their musical inventions.
No prior knowledge of programming or working with electronics is required.
Computer programming and musical concepts will be explored through various discussions, activities, lessons, and projects.

[bookmark: _Toc9426442]Course Overview
	Day 1
	Day 2
	Day 3
	Day 4
	Day 5

	Ice Breaker
	Indexing quiz (review)
	Adding tunable parameters to script
	Importing Sounds into MATLAB
	Creating a music file of your own

	Overview of activities to be covered in the week
	Vector math review
	Script to function
	Editing Sounds in MATLAB
	Preparing for a musical concert

	Sound and music
	Saving variables from Workspace
	Using 'if' statements
	Creating a sound file for silence
	Wrap-up

	Music has rhythm and volume
	Using functions
	Figure window and callback function
	Concatenating sound files
	

	Sound is made by vibrating air
	Playing by numbers
	Instrument - Keyboard Piano
	Adding sound files
	

	What is programming?
	Happy Birthday song
	Instrument - Virtual Theremin
	Creating a melody
	

	Acting out programming
	Composing a song
	Customizing the Theremin
	Play with the Music Mixer
	

	Using MATLAB to visualize sounds
	Using ‘for’ loop
	
	Perform as a band
	

	Fun with MATLAB (Filler)
	Practicing ‘for’ loops
	
	
	

	Using MATLAB as a calculator
	
	
	
	

	Creating and using variables
	
	
	
	

	Customizing MATLAB (Filler)
	
	
	
	

	Test Understanding of Variables
	
	
	
	

	Shopping for our musical party
· Creating Numeric and String Vectors
· Indexing and Basic Function Calling Syntax
· Computing with Vectors
	
	
	
	

[bookmark: _Toc534875094][bookmark: _Toc534883346][bookmark: _Toc534889224][bookmark: _Toc4747055][bookmark: _Toc534875095][bookmark: _Toc534883347][bookmark: _Toc534889225][bookmark: _Toc4747056][bookmark: _Toc534875096][bookmark: _Toc534883348][bookmark: _Toc534889226][bookmark: _Toc4747057][bookmark: _Toc534875097][bookmark: _Toc534883349][bookmark: _Toc534889227][bookmark: _Toc4747058][bookmark: _Toc9426443]Course Components
[bookmark: _Toc9426444]Educator Guide
It is the document you are reading right now! This guide contains all the background information, course preparation, and daily lesson plans for the activities to cover with the students each day. Be sure to read this guide carefully as it contains the basic information you need to teach this course successfully.
Tip: To effectively navigate the Educator Guide, enable the Navigation Pane in Word by going to the 'View' tab and then in the 'Show' section. Enable the corresponding checkbox.
[bookmark: _Toc9426445]Student Worksheets and Handouts
Included are worksheets that students would fill out to reinforce concepts, the lesson plan would indicate when to hand each worksheet. Handouts contain a list of vocabulary and common MATLAB commands the students would need in the course. Encourage the students to refer to the handouts through the course.
The 'Materials' section in each activity lists the Worksheets and/or Handouts required for that activity.
[bookmark: _Toc9426446]PowerPoint Presentation Template
This presentation highlights main goals for the course and introduces the key activities to the students.
[bookmark: _Toc9426447]Course Toolbox and Audio Library
The course toolbox includes all the code files and data that the students will need for this course. The audio library includes all the audio files that may be used for the course.

[bookmark: _Toc9426448]Classroom Requirements
We recommend setting up desks and tables such that students can move around to facilitate group work and can also see the screen where you would project the PowerPoint, MATLAB and web pages that are referred to in the lesson plans. Laptops with access to power outlets will be needed for students. Internet access is required if using MATLAB Online and is optional if MATLAB is installed on the computer.

[bookmark: _Toc9426449]Setting Up Computers
[bookmark: _Toc9426450]Software
You can either use Windows or Mac for this course.
First, ensure that the students have access to a MATLAB license.
[bookmark: _MATLAB_Licenses][bookmark: _Toc9426451]MATLAB Licenses
[bookmark: _Download_and_Install]You will need the following products for the course:
· MATLAB
This course has been written and tested with MATLAB R2018b.
If you have the MATLAB Primary and Secondary School Suite for the school, please refer to Step 1 in the link below for associating students as end users to this license.
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/academia/highschool/includes/primary-and-secondary-school-admin-guide.pdf
For other license types, you can find more information in the documentation:
https://www.mathworks.com/help/install/index.html
If you require assistance with licensing and installation, please contact the Installation Support Team: https://www.mathworks.com/support/contact_us.html

Once the students have been associated as end users for the appropriate MATLAB license, there are two options for them to access MATLAB for this course:
Download and install MATLAB on a local computer (preferred)
OR
Use MATLAB Online (requires an internet connection with good speed)
See the applicable section on the next page for further instructions.

[bookmark: _Download_and_Install_1][bookmark: _Toc9426452]Download and Install MATLAB on local computer (preferred)
If you have the MATLAB Primary and Secondary School Suite for the school, please refer to Step 2 in the document linked below for associating students as end users to this license.
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/academia/highschool/includes/primary-and-secondary-school-admin-guide.pdf
For other license types, determine which installation procedure to use from the page below:
www.mathworks.com/help/install/ug/choose-installation-procedure.html
When the product installation option pops up please select MATLAB and complete the further installation process.

OR

[bookmark: _Use_MATLAB_Online][bookmark: _Toc9426453]Use MATLAB Online
NOTE- Students will need a MATLAB license to be associated with their own MathWorks accounts to use MATLAB Online.
To access MATLAB Online, computers will need to be equipped with the Google Chrome or Microsoft Edge web browsers and high-speed internet*. Students can open the web browser and go to the following web address to access MATLAB:
https://matlab.mathworks.com/
Students must use their MathWorks User ID and Password to login and use MATLAB.
For more information about MATLAB Online, please visit:
https://www.mathworks.com/products/matlab-online.html
*Audio playback functionality in MATLAB Online differs from Desktop MATLAB. The instructor guide provides notes where applicable to address the differences.

[bookmark: _Toc9426454]Installing Course Files
[image:]Once you unzip the course materials downloaded from the course web page, you should see these files and folders:

1. instructor_code_files – (For Instructor only) This folder contains all the code files and answer scripts being used in the course

2. instructor_resources – (For Instructor only) This folder contains resources (non-code files) for the instructor to run the course including the Instructor Guide, worksheets and handouts

3. coursefiles.zip – This contains a library of sounds that students use during the course

4. setupBnB.m – This script helps install all the course files and MATLAB apps to student computers

 NOTE - Student computers only need the coursefiles.zip and setupBnB.m downloaded onto the Windows or Mac Desktop
The next steps will be determined based on whether the students will use locally installed MATLAB or MATLAB online. Please follow the instructions in the appropriate section below.

[bookmark: _For_MATLAB_installed][bookmark: _Toc9426455]For MATLAB installed on local computer
Once the files have been copied over to Desktop:
1. Open MATLAB and navigate to Desktop (which should contain the coursefiles.zip and setupBnB.m files) by clicking on the [image:] icon shown below:
[image:]
2. In the Command Window next to the >> symbol, type the following:
>> setupBnB
This will start installing the course toolbox and the audio files. This could take a few minutes to complete.
Once this process in complete, you will see that the Current Folder has changed to Desktop -> coursefiles
This is the folder where we will save all the files created in the course.
3. Navigate to the APPS tab in MATLAB. Once you see all six Apps below, the toolbox has installed successfully.
[image:]

OR

[bookmark: _For_MATLAB_Online:][bookmark: _Toc9426456]For MATLAB Online
Once the files have been copied over to Desktop:
1. Open the web browser (Google Chrome or Microsoft Edge) and go to:
https://drive.matlab.com
Students will have to sign in to their MathWorks account at this page.
2. Upload 'coursefiles.zip' and 'setupBnB.m' from Desktop to MATLAB Drive.
a. Click on the Upload button
[image: C:\Users\agopiset\AppData\Local\Microsoft\Windows\INetCache\Content.MSO\36919482.tmp][image: C:\Users\agopiset\AppData\Local\Microsoft\Windows\INetCache\Content.MSO\820327E0.tmp]
b. Click on 'Choose files' and then navigate to Desktop (where the files are copied).
c. Select 'coursefiles.zip'
d. Click on 'Upload'
[image: C:\Users\agopiset\AppData\Local\Microsoft\Windows\INetCache\Content.MSO\FECACE1A.tmp]
e. Similarly, upload 'setupBnB.m' file to MATLAB Drive.
3. Once the upload process completes, open a new tab in the web browser and go to the following web page
https://matlab.mathworks.com/
You should see the 'coursefiles.zip' and 'setupBnB.m' files in the Current Folder pane on the left.
4. In the Command Window next to the >> symbol, type the following:
>> setupBnB
This will start installing the course toolbox and the audio files. Note: This could take several minutes to complete.
Once this process in complete, you will see that the Current Folder has changed to MATLAB Drive -> coursefiles
This is the folder where we will save all the files created in the course.
5. Navigate to the APPS tab in MATLAB. Once you see all six Apps below, the toolbox has installed successfully.
[image: C:\Users\agopiset\AppData\Local\Microsoft\Windows\INetCache\Content.MSO\81BCCD38.tmp]

[bookmark: _Toc9426457]While projecting in front of the class - Increase the font size on your computer for display!
The MATLAB code and text font are set to default values, which works well for the individual user. However, when presenting to an audience in a large room, the font size may be too small to see. So, it is recommended that the font size be increased.
To do this:
In the MATLAB Home tab, within Environment, click on Preferences. This will open the Preferences window.
[image:]
Navigate to Fonts and change the font size for Desktop code font and Desktop text font to higher values. This will enable the audience to see what commands are being typed and what is in the Current Folder, Workspace, and elsewhere.
NOTE- MATLAB Online does not have the same options in Preferences. To increase font size on MATLAB Online, use the press Ctrl and + keys simultaneously on the keyboard OR hold the Ctrl key down and use the scroll wheel on the mouse.

[bookmark: _Toc9426458]Educational Standards
NGSS:
MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
ISTE:
1. Creativity and Innovation:
a. Apply existing knowledge to generate innovative ideas, products, or processes.
b. Create original works as a means of personal or group expression.
4. Critical thinking, problem solving, and decision making:
a. Identify and define authentic problems and significant questions for investigation.
b. Plan and manage activities to develop a solution or complete a project.
c. Collect and analyze data to identify solutions and/or make informed decisions.
d. Use multiple processes and diverse perspectives to explore alternative solutions.
CSTA:
Computational Thinking
1. Use the basic steps in algorithmic problem-solving to design solutions (e.g., problem statement and exploration, examination of sample instances, design, implementing a solution, testing, evaluation).
Computing Practice & Programming
5. Implement problem solutions using a programming language, including: looping, behavior, conditional statements, logic, expressions, variables, and functions.
8. Demonstrate dispositions amenable to open-ended problem solving and programming (e.g., comfort with complexity, persistence, brainstorming, adaptability, patience, propensity to tinker, creativity, accepting challenge).

[bookmark: _Toc9426459]Learning Goals
At the end of each day, the students will be able to:
	Day 1

	· Explain the physical basis of sound
· Identify relationship between amplitude, frequency and shape of a sound wave to its volume, pitch and timbre
· Explain what programming is
· Open MATLAB and navigate the interface
· Execute commands in the Command Window and Live Scripts
· Create scalar and vector variables and perform basic operations.
· Identify string, logical and numeric data types and their sizes
· Index into vectors to extract values
· Parameterize their code to make it more flexible

	Day 2

	· Save variables to a MAT file and load them back
· Comfortably use vectors and variables
· Use the basic function-calling syntax
· Use pure sine tones to create a musical composition
· Use 'for' loop to write shorter and more efficient code

	Day 3

	· Refactor their code for better structure
· Create parameters in scripts
· Create a function
· Use logical operations
· Develop intuitive understanding of an interactive program's control flow
· Independently write conditional statements using logical operations

	Day 4

	· [bookmark: _Hlk4750751]Import and edit sound files in MATLAB
· Understand that a sound signal is represented as a vector of numbers in MATLAB
· Concatenate vectors of sound signals to combine them
· Add two vectors of sound signals to mix them
· Use addition and concatenation in a loop to create melodies

	Day 5

	· Apply all the concepts learnt through the course for personal projects

 Learning Goals

1. [bookmark: _Toc9426460][bookmark: _Hlk529783902]Lesson Plan
[bookmark: _Toc9426461]Goals and Objectives
Day 1 introduces the two main topics that will be covered in this course – programming and music. Students will understand music as organized sound and will learn some basic MATLAB programming.
	[bookmark: _gjdgxs]At the end of this day students should be able to:

	· Explain the physical basis of sound
· Identify relationship between amplitude, frequency and shape of a sound wave to its volume, pitch and timbre
· Explain what programming is
· Open MATLAB and navigate the interface
· Execute commands in the Command Window and Live Scripts
· Create scalar and vector variables and perform basic operations.
· Identify string, logical and numeric data types and their sizes
· Index into vectors to extract values
· Parameterize their code to make it more flexible

[bookmark: _Toc9426462]Day 1 Overview
	Topic
	Description
	Duration (minutes)

	Ice Breaker
	A round of introductions to get everyone comfortable.
	10

	Overview of activities to be covered in the week
	A PowerPoint presentation showcasing what the students will achieve by the end of the course to get them excited.
	10

	Sound and music
	A discussion about sound, music and the difference between them.
	10

	Music has rhythm and volume
	A group activity to transform sound into music.
	10

	Sound is made by vibrating air
	A discussion and observation of what causes sounds.
	10

	What is programming?
	A discussion about what programming is.
	10

	Acting out programming
	A group activity to act out programming.
	20

	Using MATLAB to visualize sounds
	Open an App to visualize sound waves while listening to the sounds. Change amplitude and frequency. Mix music with various levels of noise.
	20

	Fun with MATLAB (Filler)
	Introduction to the Command Window and some fun commands to play with.
	10

	Using MATLAB as a calculator
	Using the Command Window for simple calculations, students will learn about basic mathematical operators.
	15

	Creating and using variables
	Introduction to variables and Live Scripts.
We motivate the need for variables in an activity to calculate individual costs at a diner.
	20

	Lunch

	Customizing MATLAB (Filler)
	Open MATLAB and play with the interface by changing colors of the screen and text.
	15

	Test Understanding of Variables
	This is a brief discussion about variables to test the students' understanding of some trickier concepts about variables.
	10

	Shopping for our musical party
· Creating Numeric and String Vectors
· Indexing and Basic Function Calling Syntax
· Computing with Vectors
	We have a shopping list for our musical party. There are two shops and some discount coupons. Students will decide which items to buy from which store. They will learn some basic programming concepts along the way.
Note- This activity is split into three tasks with two sections each. You may take breaks in between as required.
	60+

	
[bookmark: _Activity_–_Ice][bookmark: _Toc9426463]Activity – Ice Breaker
Motivation:
Getting the students comfortable with their surroundings.
Steps:
· Introduce yourself and welcome students to Byte and Beats!
· Tell students that, during this week, they will learn to use computer programming to make sound and music. They will also create their own musical compositions using all the skills they learn.
· For this icebreaker, ask students to share their name and their favorite thing to do over summer break.
· Each person will repeat the names and favorite activities of everyone introduced before them and then introduce themselves.
· The last person will repeat the names and favorite summer activities for everyone, and then for themselves.
[bookmark: _Discussion_–_Overview][bookmark: _Toc9426464]Discussion – Overview of activities to be covered during the week
Motivation:
What will we learn and create in these five days?
Materials:
· Presentation slides "Bytes and Beats Overview"
Steps:
· Show them the slides in “Bytes and Beats Overview”.
· Each slide has notes to describe the upcoming activities briefly.
· Put emphasis on the fact that there will be a Concert or Show-and-Tell at the end of the week and they can use a combination of all or some of these highlighted activities.
· Which of these skills might they want to use in their final project?
[bookmark: _Discussion_–_Sound][bookmark: _Toc9426465]Discussion – Sound and Music
Learning Objectives:
· Distinguish between sound and music.
Motivation:
If we want to make music, we should know what music is. If we are going to make sound from a computer, we should know what sound is. What is music? What is sound?
Steps:
Explain the purpose of the course — to programmatically create and listen to music from a computer. Then engage in a discussion about exactly what sound and music are. Points to discuss:
· What is Sound? (ask the students)
Anything you can hear is sound. Some students might also identify that sound is energy, or vibrations or wave.
· Examples: music, a human voice, airplanes taking off, dishwashers, thunderclaps, barking dogs, and so forth.
· What is Music?
Music is a special kind of sound.
Music is a pleasing kind of sound.
Music has rhythm, a recognizable tune, and is made by people.
· Examples: List the songs or instruments they like.
· How is music made?
People play instruments, they sing, and they play recordings of the same.
[bookmark: _Activity_–_Music][bookmark: _Toc9426466]Group Activity – Music Has Rhythm and Volume
Learning Objectives:
· Create organized music from disorganized sound.
· Understand two key aspects of music: rhythm and volume.
Motivation:
If everything we hear, including music, is a kind of sound, how can we make that special thing called music? Let’s do an activity to create music from sound.
Steps:
· Get the attention of the class. Tell them we are going to see if we can create music from noise and hear the difference. All the students will be doing is clapping.
· Tell all the students to clap. Get them to go crazy clapping very enthusiastically and, hopefully, in a random fashion. Ask them if this is music yet. (No)
· Tell them to keep on clapping. While they are doing that, you will organize the students, group by group, to do special types of clapping. In a classroom of 20 students, try to have about four students per group. Everyone else should continue clapping as before (emphasize this) but point to one group. Tell this group that each member should clap exactly as you do, while you clap at a slow but steady rhythm (about two claps per second). The first group will be keeping the tempo for the rest of the exercise, so it should be an appropriate speed.
· Go to another group and direct those students to clap in a different rhythm. For example, they could clap twice as fast as the other group, or twice as slow, or a combination of fast and slow claps. An interesting rhythmic challenge for some students will be to get them to clap three times as fast as the first group.
· Ask them if this is music yet. (sort of) Tell the students that their sound has already changed because now it is no longer random—it has a structure. This is called rhythm.
· However, it still does not sound that great as music. One component that is missing is volume, or how loud the sound is. Everything is at the same volume level, so all the sounds get mixed together. Now you take over as conductor. The students keep clapping their rhythms, however, on indication by you they should clap loudly (a high-hand gesture), softly (a low-hand gesture), or stop altogether (a stop-hand gesture). Through creative conducting, try to see if they can make an interesting rhythm or song. Feel free to improvise on your methods of conducting.
· Ask the students if this is music yet. Ask what else is missing to make this more like music? (melody, singing, or lyrics are possible examples). If you are brave, you can try singing or whistling to add a melody on top of the clapping.
· [bookmark: _Activity_–_Sound]Explain that even though the fact that they were clapping never changed, the quality of the sound changed from random noise to something musical by adding the structures of rhythm and changing volume. Give a big round of applause for a job well done!
[bookmark: _Toc9426467]Activity – Sound is Made by Vibrating Air
Learning Objectives:
· Understand that sound is caused due to vibrations
· Associate sinusoidal waves with sound vibrations
Motivation:
We know what sound is because we can hear it. But what causes sound? Can we ‘SEE’ sound? What would it look like?
Materials:
· Tuning fork (optional)
· A string-based musical instrument (optional)
· MATLAB
Steps:
PART A – Vibrations
This section requires some optional items to demonstrate that sound is caused by vibrations.
1. A tuning fork and a glass of water
· Hit a tuning fork and ask the class if it is making a sound.
· While it is still ringing, hold the tuning fork still and ask the class if the tuning fork is moving.
· The tuning fork is vibrating very rapidly, and the sound we hear is due to the prongs vibrating the air around them.
· The speed of the vibrations determines the pitch.
· To view these vibrations, immerse the vibrating fork into a glass of water and watch the splashing that occurs.
· Explain that tuning forks are used in music because the sound that the tuning fork makes is an exact musical pitch that you try to “tune” your instrument to.
· Ask the students to hum the pitch of the tuning fork.
· While they are humming, have them put their hand up to the throat to feel the vibrations
OR
2. A musical instrument (like a guitar)
· You can also do this activity with just a music instrument and have the students feel the instrument vibrating when sound is produced.

OR

3. If you do not have access to these, you can show videos like these:
Sounds of Science - Cool Science Experiment
Good Vibrations
Top 10 Demonstrations with Tuning Forks (only first 2-3 demos should suffice)

PART B – Waves
· Ask the students if they have ever wondered how a guitar causes sounds?
It works in the same basic way as a tuning fork. When the guitar string is plucked, it causes a vibration in the air and, thus, a sound. What makes a guitar sound like a guitar is that much of this air comes from the vibrating air column inside the guitar. The shape of the guitar affects the way the sound vibrates and is heard.
· Ask the student what sound looks like? (kind of a trick question)
Show them a video which shows guitar strings in slow motion:
(20-40 times slower than real time)
Slow Motion GUITAR Strings -2000/4000% slower

You can pause and mute the above video and open the “Amplitude and Frequency” App in MATLAB by going to the APPS Tab:
Note: The students must not open the app right now
[image:]
· Tell the students that if we could see the air molecules moving, their vibrations can be characterized/represented by such a shape.
Watch this short video for understanding.
This shape is called a wave, specifically a sine wave, and that is why you have the term ‘sound waves’.
· OPTIONAL: You may also show this fun music video that demonstrates many experiments to ‘SEE’ sound.
CYMATICS: Science Vs. Music - Nigel Stanford
[bookmark: _Toc9426468]Discussion – What is Programming?
Learning Objectives:
· Discuss what programming is at a high level
· Talk about examples of programming applications
· Introduce MATLAB
Motivation:
How do we make our computer create and play music? What is MATLAB?
Steps:
1. Introduce programming
· Tell the students that one part of the course is about music and the other part is about programming. We will be making music using computer programs.
· Ask the students what they think programming is.
· Essentially, programming is a way to communicate with the computer and instruct it to perform tasks.
· Human beings can make mistakes when doing large calculations. We also become bored or distracted when doing repetitive things, which makes us more error-prone. Computers, on the other hand, are very quick at doing math and logic operations. They are also good at doing repetitive things (e.g. changing traffic lights every 30 seconds) as they don’t have feelings like boredom. This makes computers especially useful. But computers can’t think for themselves and need instructions for doing things, so they need humans to program them.
2. Discuss examples of programming and code applications:
· Apps on the phones such as Candy Crush or Instagram
· Websites: Facebook and YouTube
· Digital watches: Ask if anyone is wearing a digital watch and ask if it has code in it (it does)
Get the students to realize that they are surrounded by code and programming applications.
3. MATLAB is a programming language. Just like we have different human languages to talk to one another, we give instructions to the computer using a programming language. MATLAB is used for many different applications.
Some examples are: Mars rover, airplanes, car monitoring systems, and so forth.
[bookmark: _Activity_–_Acting][bookmark: _Toc9426469]Group Activity – Acting Out Programming
Learning Objectives:
· To run a program at the very minimum you need:
· Human programmer – to write commands
· Computer – to process or execute the commands
· Output Device – (attached to the computer) to show tangible outputs or results
· A computer needs extremely specific instructions
Motivation:
We must understand what programming is before we start writing code.
Steps:
1. Divide the students into groups of five.
2. Tell the students we are going to act out programming and have a mini concert.
3. Each group should have:
a. 1 Programmer (music composer)
b. 1 Computer (conductor)
c. 3 Output Devices (musicians)
4. In each group, ask them to decide who will be the programmer and the computer. The other three will be output devices.
5. For the Output Devices:
a. Find items in the classroom or gather materials that the students can use to make different sounds with. For example: cans, spoons, knock on the desk, rulers, aluminum trays or even snapping their fingers.
b. From each group, the three students acting as output devices should choose ONE sound each and name it – ask them to think of a word to describe their sound. For example, TING, BOOM, CLAP, SNAP, etc.
c. Ask them to use a sticky note or index cards to tape the sound names they came up with on their clothes.
d. These names will become the commands that the programmer in their group can use. A command is a piece of code or instructions that the programmer writes for the computer.
6. For the Programmers:
a. Ask the programmers in each group to write out a sequence of sound names or commands on a piece of paper that sounds like a rhythm. For example, if a group has three sound names - TING, BOOM, CLAP – the sequence can be something like:
i. TING
ii. BOOM
iii. BOOM
iv. CLAP
v. TING
vi. BOOM
vii. BOOM
viii. CLAP
b. This becomes a list of commands which the programmer then hands to the computer. The computer reads the commands, and then does whatever tasks it is told to do.
7. For the Computers:
a. The Computers will then execute the commands line by line by pointing their hand at the corresponding output devices.
8. Output Devices:
a. The output devices now play their sound when the computer points at them.
9. Congratulate the class on writing and executing their first program!
10. Ask them what will happen if the programmer uses a fourth sound in his/her sequence which is not available in the group? (Ans: The computer will execute all the lines up until it reaches the fourth sound and then it won’t know who to point to. Basically, it will give an error saying, “I don’t know what you would like me to do here.”)
Concepts learned:
· The programmer needs to use a valid set of keywords and syntax that the computer understands and can execute.
· A command is a piece of code or instructions that the programmer writes for the computer.
· The computer reads the commands, and then does whatever tasks it is told to do.
· The computer cannot think for itself and guess what the programmer is trying to do.
[bookmark: _Activity_–_Using][bookmark: _Toc9426470]Activity – Using MATLAB to Visualize Sounds
Learning Objectives:
· Visualize a sound signal in MATLAB
· Understand the effect on a sound by changing the wave’s amplitude and frequency; and adding noise to it.
· Start MATLAB and execute a command given by the instructor
Motivation:
Are you ready to start working with computers? Let’s open MATLAB up and use it to explore the connection between the shape of a sound wave and the corresponding sound.
Materials:
· MATLAB
· [image:]Worksheet “Using MATLAB to Visualize Sounds”
· Vocabulary Handout
· MATLAB Functions Handout
Steps:
1. Ask the students to follow along with you on their computers.
2. Ask the students to open MATLAB by double-clicking the MATLAB icon on their desktop.
a. Have them give you thumbs up when they have opened MATLAB.
3. The students shouldn’t worry right now about what the different boxes and icons in the MATLAB window mean or do. We will cover those soon.
4. Ask them to go to the APPS tab and click on “Amplitude and Frequency”
[image:]
5. This will open an app which illustrates vibrations from different frequencies.
6. Get the students to change the frequency and amplitude values to see how these affect the vibration of the sound waves.
a. What happens when we increase or decrease the frequency?
· Increase the frequency – the vibrations are quicker or more frequent
· Decrease the frequency – the vibrations are slower or less frequent
So, frequency denotes how frequently the vibrations are happening.
b. What happens when we increase or decrease the amplitude? The height of the sound wave becomes larger or smaller accordingly.
7. Once they have had a few mins to see how vibrations cause sound waves, tell the students that we have another app to visualize and interact with sound waves, and we can bring it up by going to the APPS tab again and clicking on “Sound, Music and Noise”.
[image:]
8. Explain the purpose and use of the application. By pressing Play, the student will play a sound file that has noise in it. This noisy sound can be visualized on the application.
9. Get the students to move the Noise to Music scroll bar (bottom) and the Volume control (right) to adjust the noise added and the volume of the sound.
10. Hand out the “Using MATLAB to Visualize Sounds” worksheet and ask the students to fill it out by playing with the application.
11. Ask and discuss the following:
a. What happens when the noise is increased or decreased? How is the wave affected?
· Increase the noise level – makes the wave messy because it adds disturbances.
· What happens when the volume is increased or decreased? How does the wave change?
The height of the wave
· This corresponds to volume. The height, or amplitude, of a wave determines how loud it is.
· Students can increase the amplitude with the toggle in the program.
b. Does music stay recognizable as I add random noise to it?
· Students can increase the amount of noise to the clip and view the effects.
12. Give the students the vocabulary and MATLAB function handouts. These have a list of useful terminology and MATLAB functions that the students have available for use.
[bookmark: _Activity_–_Fun][bookmark: _Toc9426471]Activity – Fun with MATLAB
Learning Objectives:
· Execute some fun commands in MATLAB’s Command Window
· Get comfortable and familiar with the MATLAB interface
NOTE: Use this activity as a fun filler activity now or later.
Motivation:
Take some time to get comfortable with MATLAB and explore all the fun things it can do.
Materials:
· MATLAB
Steps:
At the Command Window ask to students to try the following commands:
>> fifteen 			(sliding game)
>> why 			(MATLAB answers all questions!)
>> knot
>> life
>> lorenz
>> spy
>> xpbombs
>> xpquad
>> logo
[bookmark: _Activity_–_Using_1][bookmark: _Toc9426472]Activity – Using MATLAB as a Calculator
Learning Objectives:
· Gain familiarity with the Command Window.
· Execute simple commands.
· Perform basic calculations in MATLAB.
Motivation:
Computers are exceptionally good at crunching numbers. Let’s use MATLAB as a calculator and at the same time get practice interacting with the MATLAB programming language.
Materials:
· MATLAB
Steps:
1. Introduce the topic, which is using MATLAB as a calculator.
2. To tell MATLAB what to do, we can type commands at prompt in the Command Window:
Type:
>> 7 * 8
Then press Enter
(When you type, omit the “>>” because that is used only in this handbook as a notation to indicate text to type at the prompt in the Command Window.)
3. Explain that we have just entered a command on the command line.
a. A command is a piece of code or instructions for the computer. The computer reads what you wrote, and then does whatever tasks you told it to do. Recall the “Acting out Programming” activity and make the connection that we, the programmers, wrote a command for the computer.
b. The computer then completed the task when we pressed Enter. When you make the computer do the command by pressing Enter, that is called executing that command. The line where you execute a command in MATLAB is called the command line.
4. Go through basic mathematical calculations. The important thing here is the concept of execution. You type commands, such as numbers and arithmetic symbols, and when you press Enter on the keyboard, MATLAB will execute the command, or perform a calculation for the line you just typed. This is done at the prompt in the Command Window, which is the line with the blinking cursor beginning with the “>>” symbols. The overall white window they are typing in is the Command Window.
5. Ask for some calculations to be performed and type them out if there is a response. Otherwise, perform your own calculations, such as
>> 6000000 * 120
This corresponds to 6 million people in Massachusetts * average weight of 120 lbs. = weight of all the people in Massachusetts.
6. Be very explicit when giving the directions for typing in MATLAB
a. The +, -, *, / symbols are plus, minus, times, and divided by, respectively. The ^ is to raise to a power, i.e. 3^5 is 3*3*3*3*3.
b. Press Enter to perform the calculation.
c. Students may ask if spaces matter. Tell them they do not (99% of the time they do not).
7. Let the students perform their own math calculations. Ask them for example calculations that they performed.
8. Congratulate the students on performing their first few calculations and commands in MATLAB!
[bookmark: _Activity_–_Calculate][bookmark: _Hlk522871242][bookmark: _Toc9426473]Activity – Creating and Using Variables
Learning Objectives:
· Use a (live) script to easily reuse and modify a sequence of commands
· Create and use numeric variables
· Understand the rules for creating, combining and renaming variables
Motivation:
We know how to perform calculations in MATLAB using numbers. What if we want to change some values? Do we have to write all the commands again?
Is there a way for MATLAB to remember numbers or calculations that we will use repeatedly in our program?
Materials: [image:]
· MATLAB
· Worksheet “Calculations in MATLAB”
Solution:
>> open DinerShares_sample_solution.mlx
Steps:
[bookmark: _Toc9426474]PART A – Worksheet
1. Tell the students that we will work in teams for this activity. Pair up the students and give one worksheet to each pair.
2. Suppose that each pair went out to eat at a diner with their friend, Hulk and wanted to calculate the price that everyone must pay.
3. Have the students decide their order from the menu in the worksheet and then calculate the cost (by hand) in the table provided.
4. Now, tell them to use MATLAB’s Command Window to make the same calculations and fill the last column of the table.
5. Now, have them change the price of soda to $1 in their calculations in the last two columns of the worksheet (by hand and then in MATLAB).
6. The aim is to get the students to realize that it is tedious to have to find who ordered soda and change the calculations everywhere.
7. For the MATLAB calculations, have them realize that it would be nice if they did not have to type their commands again when we change the price of soda.
Wouldn’t it be great if they could just change one value instead of typing each command again?
The Command Window does not let you go back and change only one value in your commands. You must type the whole command again. In the next part, we will learn how to make MATLAB reuse our sequence of commands and remember our values/numbers.
[bookmark: _Toc9426475]PART B – Live Scripts and Variables
1. In the MATLAB Command Window, type the following command:
>> startCode DinerShares.mlx
This will open a Live Script named ‘DinnerShares’ in MATLAB’s Live Editor. The extension ‘mlx’ indicates that this is a Live Script.
Notice that it contains a picture, some text and instructions. We will learn more about how to interact with a Live Script over this activity.
2. Explain that a script is a sequence of commands that can be easily reused and changed. MATLAB has ‘Live Scripts’ which let you add pictures and other text along with all your commands.
You can enter code/commands in the grey space and any other text in the white space. MATLAB will only run commands that are typed in the grey boxes. It ignores everything in the white area.
[image:]Space for Code

3. Tell the students to enter the MATLAB Commands for calculating costs in the space provided in the Live Script (these commands are same as the ones in the last column of the Worksheet).
Use the lines numbered 2 and 3 to enter these. The first one is already filled for you.
[image:]
NOTE - If a student does not see the line numbers, go to the ‘View’ Tab and click on ‘Line Numbers’ button in the ‘Display’ section.
[image:]
Shown below is an example of what a student named Mary might enter in line 2:
[image:]
NOTE - If a student accidentally deletes a code line, you can insert code lines back by clicking on the ‘Code’ button in the ‘Live Editor’ tab. Similarly, you can insert text lines by using the ‘Text’ button.
[image:]
4. The code in this script is divided into sections. To run the section of commands for Task 1, students can do one of these two things:
Click on the vertical blue bar to the left of the code
[image:]
OR
Click anywhere in the Task 1 section (the section should be enclosed by two blue lines as above), then click ‘Run Section’ button in the ‘Live Editor’ tab’s ‘Section’ section.
[image:]
Here is a sample output after a student enters all their commands and runs the completed section:
[image:]
Notice that the output/answer is displayed in the white space after each command.
You can clear this output by right-clicking anywhere in the script and selecting ‘Clear All Output’

5. Turn the students’ attention to the Workspace. It contains the Name ans and a Value. This Value is, in fact, the last answer they saw in the script.
6. Tell them that MATLAB is automatically saving their results with a name ans. This is called a “Variable”, because the value in ans keeps varying after every command.
7. Explain that a variable is like a box/container that we use to store our values or results. A Variable has a Name and a Value. We can just recall the Name when we want to use the Value stored in it and we can change its Value at any time in our program.
8. Now, go back to the Command Window. Have the students type the name of this variable they saw just now
>> ans
It will display the value saved in it.
9. Tell the students that we can create our own variables just like MATLAB creates ans and this is done using the ‘=’ sign.
10. Explain that the act of creating variables is called assignment in computer programming. (Have the students stop typing and get their attention to your screen)
Create the following variable and while doing so, explain the points listed below:
>> someNumber = 5
a. The variable name is placed to the left of the equals sign (“=”).
b. A number or calculation is placed to the right of the equals sign.
c. The equals sign is called the assignment operator, and it is placed in the middle. An operator is a special symbol that tells the computer to perform a specific action, in this case, to assign a value to a variable name.
11. You can have the students now go back to their screens and type the same in the Command Window and press Enter:
>> someNumber = 5
Have them look at the Workspace
Now have them type:
>> my_sum = someNumber + ans
Discuss what they see. Ask the students what they think the Workspace is (it stores all the variables we are currently working with). After each of the following tasks, have the students check the Workspace.
12. Have the students go back to the Live Script that is open. Tell them that we will create some variables in Task 2. Perform the same calculations as we did in Task 1, but this time save the answers to a different variable.
The variable hulk_cost has been created for example in line 4.
[image:]
Similarly, tell the students to create two variables, one to store their cost at line 5 and another for their partner’s cost at line 6.
Let them experiment with variable names. Make them meaningful and easy to recall based on the value they contain.
NOTE - The rules for creating variable names can be found here: https://www.mathworks.com/help/matlab/matlab_prog/variable-names.html. They are also discussed in step 18 below. Use these guidelines to help students create their variables.
Once complete, run the section of code in Task 2.
13. Change the price of soda to $1 at the end of Task 2 and run the section again. This is much easier since you do not need to type the full set of commands again.
14. In Task 3, students will create variables to store the prices listed on the menu.
For example, the variables sandwich and soda have been created for them at lines 7 and 8. Their values are equal to the menu price of these foods.
[image:]
Notice the semi-colon at the end of these lines. This will tell MATLAB that you do not want to display the output of these lines when you run them.You can use semi-colons at the end of a code line to suppress output display.

Tell the students to similarly create variables at lines 9 to 12 to store the prices of fries, pizza slice, ice cream and chips. They can use meaningful names for these variables and experiment with names. They may see an error when they do not follow certain rules for creating variable names. We will go over these rules later. Once completed, the script should look like this:
[image:]
15. We can use the values we save in variables to make further calculations by just using the name of the variable instead of the number.
Line 13 has already been entered for example. Discuss with them what they think line 13 is doing. They can get a hint by clicking on the name sandwich in this line. This will also highlight sandwich at line 7 where they saved a value in the variable.
[image:]
Tell them to similarly enter lines 14 and 15. This is the first time that the students will use existing variables on the right side of the ‘=’ sign.
NOTE - Line numbers may not match if students end up adding extra lines anywhere.
Run the section of code in Task 3.
16. Change the price of soda to $1 at the end of Task 3.
Discuss this with the students.
This time, changing the price of soda to $1 is a lot easier. You simply change the value assigned to the variable soda. You do not have to remember who ordered soda and change it in every calculation.
17. The last line of the code is to use these variables to add all the costs and save them to a new variable.
E.g. If their variables for Student 1 and Student 2 costs are called my_cost and Other_cost:
Total3 = hulk_cost + my_cost + Other_cost
Have them check the Workspace at the end.
18. Finally, experiment some more with variable names in the Command Window and discuss this to reinforce some concepts:
a. Naming rules: There are certain rules that you must follow when naming variables.
Variable names are case sensitive.
· First is a different variable than first.
The only symbols allowed are letters, numbers, and the underscore “_”.
· abc26 is an acceptable variable name, but 26abc is not.
Variable names cannot have spaces in them. For a variable name with multiple words, either capitalize the first letter of the subsequent words or use underscores between the words.
· jamesAnderson = 2 or james_anderson =2;
b. Errors happen: Sometimes you may type something that the computer does not understand. When this happens, you will create an error, which MATLAB will indicate in red, sometimes with a useful hint about the error. Demonstrate an error with a bad variable name:
>> 5th = 100
Ask the students what they think of this command:
>> 100 = fifth
(it is an error because the variable name must appear to the left of the assignment operator)
19. The students are doing an excellent job if they are hanging in there with you. Give them praise and ask them if they are hungry like you, after seeing all the food pictures!
Break for Lunch
[bookmark: _Toc9426476]LUNCH
[bookmark: _Activity:_Customizing_Your][bookmark: _Toc9426477]Activity – Customizing Your MATLAB
Learning Objectives:
This is a fun exercise for students—they change the colors of their MATLAB screen.
NOTE - Use this activity as a fun filler activity now or later.
Steps:
1. On your computer, change the color of your MATLAB screen. Then get the students excited about changing the color of their MATLAB screen.
2. To do so:
a. On the HOME tab, click on Preferences. It is the gear icon on the toolstrip.
b. Click on the Colors option
c. Unchecking the Use system colors allows you to change the colors of the background and text. Ask the students to choose colors they like.
3. Let the students move around and see what the other students have done with their MATLAB customizations.
[bookmark: _Discussion:_Test_Understanding][bookmark: _Toc9426478]Discussion – Test Understanding of Variables
Materials:
· MATLAB
Learning Objectives:
· Understand reassignment of variables
Motivation:
Students should now be comfortable with creating new variables and assigning them values. A further advancement of this concept is to reassign variables during course of a program.
Steps:
1. Tell the students to consider the following command and to think about what will happen for a moment, before they try it themselves and you try it together:
>> soda = soda + 1
soda =
 2
Some students might think that this will create an error because no number equals itself plus one. Others may see this as a valid command.
After briefly discussing what might happen, have them check the value of soda in the Workspace. Now, have them run the above command themselves in the Command Window, paying attention to the value of “soda” in the Workspace as they do. Execute this command on your computer screen too. This segues into the next concept.
2. You can reassign variable names, but this concept is potentially a conceptual pitfall, so spend time to make sure the students understand what is happening.
Variable names are just name tags attached to numbers. We can remove that name tag and put it on any new number we like, even on that number itself plus one.
To put it another way, MATLAB computes the right side of the assignment operation. The result is just a number—with MATLAB it does not matter where that number came from. MATLAB then saves that number in the name on the left side. It also does not matter what was there before—it gets overwritten.
Test for understanding by asking the students what the results of the following commands will be as you execute them one by one (the last line is the trickiest one):
 >> soda
soda =
 2
a. >> soda = soda + 1
soda =
 3
b. >> soda = soda + 1
soda =
 4
c. >> soda = soda - 2
soda =
 2
d. >> sandwich = soda*2
sandwich =
 4
e. >> soda = 1
soda =
 1
f. >> sandwich
sandwich =
 4

Some students may think that sandwich should have a value of 2 at the end. However, tell them that no new calculation was performed to change sandwich’s value. On line “d” above, a number was computed with soda*2, and it was assigned to sandwich. Even though the value of soda changes, the value of sandwich will not because there was no assignment operation made to change it. Try it in MATLAB Command Window.
[bookmark: _Activity:_Shopping_for]Finally, we can now clear all the variables from the Workspace.You can remove items from Workspace using the following command:
>> clear
To clear the contents of the Command Window, you can use this command:
>> clc

You can remove items from Workspace using the following command:
>> clear
To clear the contents of the Command Window, you can use this command:
>> clc

[bookmark: _Toc9426479]Activity – Shopping for our musical party
Learning Objectives:
· Revisit variables
· Learn about data classes – string, logical and double
· Understand when and how to create vectors
Motivation:
Variables are useful to make our program remember values we want to use during its course. But sometimes, we might end up making too many variables and it can become difficult to manage them. Is there a way to group similar types of data?
Materials:
· [image:]MATLAB
· Worksheet “Party Planning – Shopping List”
Solution:
>> open ShoppingList_sample_solution.mlx
Steps:
[bookmark: _Part_A_-][bookmark: _Toc9426480]Part A – Task 1
1. Tell the students that over the next few activities we will write a program to create a shopping list for our musical party.
There are some party items to buy and we have a choice of two stores – ‘Utopia’ and ‘Paradise’. We want to keep within a budget and spend the least we can.
We will create a MATLAB program to create a list of items we should purchase from ‘Utopia’ by comparing prices of our shopping list for the two stores. We can then buy the remaining items from ‘Paradise’.
2. Before moving ahead with the exercise, we will first set the Workspace to display Size and Class of variables along with the Value.
To display these, tell the students to go to the Workspace browser, right-click on an existing field like ‘Name’ or ‘Value’ and select the additional required fields in the context menu.
Every time the students create a variable or run some code, encourage them to observe the Workspace and check these columns.
[image:]
3. Give the students a copy of the Party Planning Worksheet which contains the list of items to choose from and their prices at both stores.
4. Tell the students to open the Live Script ‘ShoppingList1.mlx’ using the command below:
>> startCode ShoppingList.mlx

5. At this point, the students should be familiar and comfortable with variables.
Go to section 1 in the code. Tell the students to observe the first line:
item1 = "balloons"
Tell them to turn their attention to your screen while you execute this command in your Command Window:
>> item1 = "balloons"
Then, look at the Workspace and tell the students to observe the Class of this variable. It is a ‘string’.
[image:]
Tell them that until now, we have created numeric variables or variables that store numbers as their value. In MATLAB, you can also store names or text or words or sentences in a variable. This is called a ‘string’. To make MATLAB store a value as a string, you must enclose the value in double quotes.
Tell the student to try it out in their Command Window by creating a variable that stores their name as a string. For e.g.
>> my_name = "Hulk"
6. Go back to the Live Script now. Ask the students what they think the three lines of code in Section 1 are doing.
[image:]
Ans: item1 is saving the name of the first item we want to buy (balloons). item1_P is saving its price from the ‘Paradise’ store. item1_U is saving its price from ‘Utopia’.
Tell them to run this section and observe the Workspace.
Ask them what the class of numeric variables is. It is ‘double’.
7. Below the given code, tell the students to use the space provided in Section 1 to create three more variables to save name and prices for party hats.
They can refer to the ‘Party Planning - Shopping List’ worksheet to look up prices for hats.
[image:]
Now run the completed section and observe the Workspace.
[image:]
8. Tell the students to turn their attention to your screen after completing Section 1.
We have two items and respective prices in our shopping list. The students will now perform an operation in MATLAB to find out which item is cheaper in Utopia.
This is what the code given in Section 2 is performing for item1.
On your screen, type the following line in the Command Window while discussing with the students what it does. This is a new operation which introduces a new class of variables. While typing the next line, explain that this operation is for comparing prices. The ‘<’ operation will display ‘1’ if the value on the left is less than the value on the right and ‘0’ otherwise.

>> buy1_U = item1_U < item1_P

Execute this line in your Command Window and observe that the value returned is 1 and the word ‘logical’ appears above it. Look at the Workspace and observe the class of the variable. It is ‘logical’.
Ask the students about the other classes we have seen so far. They should remember ‘double’ and ‘string’. Tell them that ‘logical’ is another type which means that the value can be either ‘true’ or ‘false’.
MATLAB returns logical 1 when the expression is true and logical 0 when the expression is false. Spend some time observing the values of ‘item1_U’ and ‘item1_P’ to understand what the value in ‘buy1_U’ indicates. It is logical 1 i.e. true and indicates that we should buy this item from Utopia.
9. Tell the students to go back to their Live Script and perform the similar calculations for item 2 (party hats) in the space provided in Section2.
Now tell them to run the section and then ask the class whether they should buy item 2 in Utopia. The answer is no since the comparison returns logical 0.
10. Once everyone has completed this, bring their attention to you and start this discussion.
Ask them
a. How many variables did we create so far to compare prices for only two items?
 Answer is 8.
b. How many more will we need if we add 3 more items to our shopping list?
Answer is 12. So, the total is 20!
c. There is a repetition in the computations we are performing for each item. Would it be better if we could do this for all items in one or two lines instead of repeating the same process?
They should realize that this is tedious. Tell them that there is a way in MATLAB to use very few variables and perform the calculations all at once. If we rearrange the items and prices, we can group similar values and put them in one variable. This is called a vector or an array. This is what we will do in the next Task.	
[bookmark: _Part_B_-][bookmark: _Toc9426481]Part B – Task 2
1. Go to Section 1 in Task 2. Ask the students to describe the code in this section.
[image:]
a. How many variables are created?
3 variables: items, prices_P, prices_U
b. What is stored in them?
Look at the table above this section to draw parallels- items stores the names of 2 items, prices_P stores their prices in Paradise and prices_U stores their prices in Utopia. Note that the order in which the prices are stored is the same as the order of item names in items. This is important for our computations later.
c. How are the values stored?
Each value is separated by a comma and everything is enclosed in square brackets [].
Tell the students that these are called vectors. Vectors are used to group and store values of the same Class.
2. Execute this section and observe the Value, Size and Class of the new variables created in the Workspace. The size of each of them is 1x2. This indicates that each of these variables has 1 row with 2 values.
[image:]
3. Now, tell the students to add three more items to the shopping list table. They can either
a. Fill the table provided in the worksheet
OR
b. Click and Drag the pictures in the Live Script and add them to the table. They can look up the prices from the worksheet and insert them in the table.
4. Now, they can modify the code in Section 1 of Task 2 by adding the three new names to items and their corresponding prices in prices_U and prices_P. The table they filled should help with this task.

[image:] 4
 3

5. Execute this section and observe the change in Size of the variables in the Workspace.
[image:]
6. Discuss with the students that using vectors allowed us to simply add items to the list without having to create more variables. In fact, we can keep adding more items and prices without making new variables.
7. Now the question is, how can we compute with vectors and how can we get the list of items that are cheaper in Utopia?
Tell them to check if the ‘<’ operation works with the prices_U and prices_P vectors. They will type the following line to the section 1 to do this:
buy_U = prices_U < prices_P
8. Execute this section and observe the Value, Size and Class of the new variable created in the Workspace.
buy_U is a vector of logical Class. We have now seen vectors of string, double and logical classes. We know they are vectors by looking at the Size which is 1 x 5. This means that there are 5 values stored in a single row.
9. You can now discuss what the students interpret the logical values in buy_U to mean. We saw before when comparing a single value, that logical 1 means that the item is cheaper in Utopia. The five logical values in buy_U correspond to the 5 items in items variable. 1 indicates that the corresponding item is cheaper in Utopia.
[image:]
The next two steps are to be performed on the instructor’s computer in the Command Window.
10. Now that we know which items to buy, we will learn to extract their names in a separate vector. The position of each value in a vector is called an ‘index’.
Tell the students to turn their attention to your computer screen. Execute Task 2 -Section 1 of the sample solution and show the students your items, prices_P and prices_U variables.
>> items
items =
 1×5 string array
 "balloons" "party hats" "cake" "cutlery" "paper napkins"

>> prices_U
prices_U =
 4 8 9 6 2

>> prices_P
prices_P =
 5 6 8 5 3

Execute the following commands in your Command Window one by one while discussing what each does:
>> items(1)
ans =
 "balloons"
This gets the first item name from the vector items
>> prices_U(1)
ans =
 4
This gets the first value from vector prices_U which is the price in Utopia for first item
Ask the students how they would get the first item’s price in Paradise. The answer is:
>> prices_P(1)
ans =
 5
Now, execute the following command and discuss
>> prices_U(2:4)
ans =
 8 9 6
The ‘:’ is used to indicate all numbers from 2 to 4. This will get values at indices 2, 3 and 4 from prices_U in a vector.
Next, tell them that we can also use another vector to index. For example, if we want to get the 1st, 3rd and 5th items and their prices in Utopia, we can use these commands:
>> ind = [1,3,5]; Create a vector with indices

>> items(ind)
ans =
 1×3 string array
 "balloons" "cake" "paper napkins"

>> prices_U(ind)
ans =
 4 9 2
Spend some time here to ensure understanding of indexing.
NOTE - The above outputs are based on the sample solution.
11. Finally, test their understanding by typing this code on your screen and ask them how they would index to reorder the words in the following vector of strings to form a meaningful sentence:
>> words = ["We", "party", "musical", "are", "5:00 PM", "having", "at", "a"];
The answer is
>> ind = [1, 4, 6, 8, 3, 2, 7, 5];
>> words(ind)
ans =
 1×8 string array
 "We" "are" "having" "a" "musical" "party" "at" "5:00 PM"

Optional: You can make a compound statement instead of creating ind, like so:
>> words([1, 4, 6, 8, 3, 2, 7, 5])
You can use the following command to join the words into a single string to make a sentence:
>> join(words)
NOTE – join is a function provided in MATLAB. We cover functions in detail on Day 2.
The students can now go back to the Live Script to pick up where we left off.
12. We created the variable buy_U in section 1 of this task. We have also learnt about indexing. If we can get the position numbers (indices) in buy_U that have the value 1, then we can get the names of items we want to buy from Utopia.
The students can manually get the indices by observing buy_U and then perform indexing. See if they can do that.
However, there is a command in MATLAB that will find the indices or positions of 1’s in buy_U. Tell the students to add the following line of code in Section 2:
ind_U = find(buy_U)
NOTE – find is a function provided in MATLAB. We cover functions in detail on Day 2.
Now execute the section again and look at the values in ind_U.
13. Finally, ask the students to write a line of code to extract the names of items from items that are cheaper in Utopia by using ind_U. They would be able to do this based in their understanding of indexing.
[image:] 13
 12

We have finally written a program to get a list of items from our shopping list that are cheaper in Utopia!
[bookmark: _Toc9426482]Part C – Task 3
We have learnt how to write code to compare prices and get a list of items that are cheaper in Utopia. The next two sections will introduce a little more complexity in the vector computations by using discounts and quantities.
1. Tell the students that we can get $2 off in Utopia once per item. We will perform the same task of comparing prices but this time, after subtracting the discount.
2. Before starting the Task, get their attention to your computer screen. Tell them that we can subtract a number from a vector in MATLAB. In your Command Window, show them the following command:
>> [2 3 4 5] - 2
ans =
 0 1 2 3
Look at the output and discuss. We are subtracting the number 2 from a vector and the output is another vector with 2 subtracted from each value.
We also know that we can use a variable instead of a vector and we can save the output in a variable. Show them the following to reinforce this concept:
>> my_vec = [2 3 4 5]
>> sub = my_vec – 2
sub =
 0 1 2 3
3. Now, the students can complete Task 3- Section 1. We have created a variable to store discount to start. For this task, we will subtract the discount from prices in Utopia first to calculate cost_U. Since there is no discount in Paradise, the final cost_P is same as prices_P.
4. Next, write a line of code to compare the final costs from the previous two statements and save result in buy_U.
5. Finally, ask the students what the next two lines should be. They are same as the last lines from previous section.
[image:] 5
 4
 3

6. Optional: What if Utopia had $2 discount only for the first 3 items and $1 for all the remaining items?
· We can make the discount variable a vector instead of a single number (scalar).
· Change the line discount_U = 2 to discount_U = [2 2 2 1 1]
Execute the section. Notice that each number in discount_U is subtracted from the corresponding price without changing anything else! We just learnt how to subtract a vector from a vector. Keep in mind that to do so, the sizes of the vectors must be same. Ask the students why. (MATLAB will not know what to do with extra numbers. It will give an error)
7. Optional: You may choose to just demonstrate the next section and allow the students to follow. Here, we will consider buying different quantities of each item instead of just 1 pack. Ask the students for ideas on how they might do that. The hint is in the provided code. (There are empty square brackets next to quantity).
8. Create a vector by filling the empty square brackets with quantities for each item. They can first fill them in the table provided in the worksheet or at start of Task 2.
9. The prices in both stores should now be multiplied by the corresponding quantities before discount is subtracted. Tell them about the ‘.*’ operator. The dot before the multiplication operation tells MATLAB that we want to multiply two vectors element by element. You can add this line in the section to demonstrate:
cost_P = quantity.*prices_P
10. From here on, the students should complete the section by adding a line to compute cost_U. Provide hints as necessary. Here is the solution with sample output:
[image:] 8
 7
 9

To calculate cost_U, discount_U must be subtracted after quantity is multiplied with prices_U
Notice that we have used a compound statement at line 25. Instead of assigning the output of comparison to buy_U, we have directly used the comparison expression in the parenthesis. Compound statements can be tricky, and students may learn to use them only if they truly understand variables and assignment.
11. Students may now clear the Workspace and Command Window.
12. Congratulate the students on coming so far! We have made our shopping list and are getting ready for the party. Very soon we will also start making our music!

Suggested Instructor Prework

Page | 1		0 Appendix
[bookmark: _Toc9426483]Lesson Plan
[bookmark: _Toc9426484]Goals and Objectives
Day 2 introduces functions and loops in programming. Students will use pre-existing functions and a 'for' loop to write a script and play their own musical compositions by combining basic sine tones.
	At the end of this day students should be able to:

	· Save variables to a MAT file and load them back
· Comfortably use vectors and variables
· Use the basic function-calling syntax
· Use pure sine tones to create a musical composition
· Use 'for' loop to write shorter and more efficient code

[bookmark: _Toc9426485]Day 2 Overview
	Topic
	Description
	Duration (minutes)

	Indexing quiz (review)
	Students will play two short quiz games to practice indexing of numeric and string vectors.
	30+

	Vector math review
	Revise vector creation and computation in the Command Window to reinforce concepts we touched in the Party Shopping activity.
	15

	Saving variables from Workspace
	Students will learn to save variables from the Workspace to a MAT file and load variables back from the file to the Workspace.
	10

	Using functions
	Learn about MATLAB’s functions, use some built-in MATLAB functions and use a function we provide with this course to play music by numbers
	40

	Playing by numbers
	Practice the function calling syntax in MATLAB by using a function provided in the course to play sine tones by numbers.
	15

	Happy Birthday song
	Students will use another function ‘sineSound’ provided for this course. They will learn to write a script that plays the birthday song using pure sine tones. Finally, they will learn to play chords.
	60+

	Lunch

	Composing a song
	In this activity, students will form groups and get creative. They will compose their own song using a simple keyboard and then use the ‘sineSound’ function to create their script like we did for the Happy Birthday song.
	60

	Using ‘for’ loop
	This activity/lesson motivates the use of loops. Students will rewrite the Happy Birthday song script using a ‘for’ loop.
	30+

	Practicing ‘for’ loops
	To end the day, students can practice ‘for’ loops and use them to rewrite their own composition or come up with a new composition.
	10+

[bookmark: _Activity_-_Indexing][bookmark: _Toc9426486]Activity – Indexing Quiz (review)
Learning Objectives:
· Revisit vectors and indexing
Motivation:
We learnt about vectors and indexing on Day 1. In this activity, students will practice these concepts in a quiz.
Materials:
· MATLAB
Steps:
1. Tell the students to go to the APPS tab and click on “Indexing Quiz”.
2. This will open the app shown below:
[image:]
3. Click on the “Let’s get started!” button to start. You should see the screen below:
[image:]
4. There are two sets of quizzes. The first quiz set has a numeric vector called numbers. The students must fill in appropriate indexing in the text box to complete the command to get the desired numbers.
5. For the first question, students need to index into all the even numbers.
[image:]
Please ensure that:
· the students use square brackets to create a vector of indices
· use index values and not the actual even numbers. For example, the following would be incorrect
[image:]
6. Once they answer a question correctly, the app moves to the next one. There are 5 questions in all. The solutions for each question are provided below.
7. Students can click the “Show Example” button to see a sample question and its solution.
8. Pressing enter after typing the answer in the text box will evaluate it.
9. To navigate the questions, use the “Previous” and “Next” buttons.
10. Here are the solutions to the questions:
NOTE – There is more than one right answer for each question. Any order of indexing is allowed so long as the output vector contains the desired numbers. Space can be used in place of commas in MATLAB. The answers below are the best answers.
a. Get all the even numbers
>> evens = numbers([4,5,6,9])
Or
>> evens = numbers([4 5 6 9])
>> evens = numbers([4:6,9])
b. Get all the odd numbers
>> odds = numbers([1,2,3,7,8,10])
Or
>> odds = numbers([1:3,7,8,10])
c. Get all the numbers greater than 50 (Use :)
>> large = numbers(6:10)
Remind the students that colon operator (:) automatically creates a vector, so we don’t need to use square brackets with it. Here is a quick example
[image:]
d. Get all the numbers less than 50 (Use :)
>> small = numbers(1:5)
e. Get all the numbers divisible by 5 (Use , and :)
>> div5 = numbers([2,6:9])
11. After the last question, the students can move to the second quiz set by clicking on the tab called “sentence”.
[image:]
12. This quiz will reinforce understanding of string vectors and indexing.
13. There are three string vectors - who, what and where. Students will see a picture on the screen. They must index into each of these three vectors and create a new vector – sentence – which describes the picture in a sentence.
14. Students can click the “Show Example” button to see a sample question and its solution.
15. Pressing enter after typing the answer in the text box will evaluate it.
16. To navigate the questions, use the “Previous” and “Next” buttons.
17. Here are the solutions to the questions:
NOTE – The strings can be separated by space in place of commas. The order of who, what and where is important to form a coherent sentence. Space can be used in place of commas in MATLAB.
a. sentence = [who(1), what(3), where(2)]
"A kitten is sleeping in a bowl"
b. sentence = [who(2), what(2), where(3)];
"Swans are swimming in the lake"
c. sentence = [who(3), what(4), where(1)];
"Three toddlers are eating in a classroom"
d. sentence = [who(4), what(1), where(4)];
"A woman is listening to music by the window"
18. If some students complete the quiz early, you can encourage them to try different answers for numbers game and to play with the sentence by trying out some fun combinations of who, what and where.
19. Discuss the answers with the students.
[bookmark: _Lesson_-_Vector][bookmark: _Toc9426487]Lesson – Vector math review
Learning Objectives:
· Revisit and practice vector math
Motivation:
We performed some calculations with vectors in the Shopping List activity. Let us revisit and practice some more for deeper understanding. In subsequent activities, this will help us to work with sound waves in form of vectors.
Materials:
· MATLAB
Steps:
1. Ask the students to execute the following commands (in bold) in the Command Window as you execute them on your screen and discuss the outputs and the syntax. The expected output has been given below each command.
2. Recollect that a numeric vector is used to store similar numeric values in a single variable. It is a collection of numbers. You can add or subtract a single number to/from a vector. A single number is called a scalar.
>> x = 1:5
x =
 1 2 3 4 5
We have used the : operator for indexing. It is used to indicate all the numbers in between with a gap of 1. It can also be used to create a vector of numbers as shown.
>> y = x + 10
y =
 11 12 13 14 15
Ask the students how they would use y to get back the original vector x. Answer is:
 >> y-10
3. You can multiply or divide a vector with a scalar.
>> z = x * 10
z =
 10 20 30 40 50
4. You can add or subtract two vectors of the same size.
>> b = 10:15
b =
 10 11 12 13 14 15
>> a = [2 2 2 3 3 3]
a =
 2 2 2 3 3 3

>> c = b – a
c =
 8 9 10 10 11 12
5. You can multiply or divide two vectors of the same size. In this case, however, you must use “dot” notation, which tells MATLAB to perform multiplication operation between the corresponding elements of the two vectors and return a vector.
>> d = b .* a
d =
 20 22 24 39 42 45
>> e = a .* a
e =
 4 4 4 9 9 9
6. Let the students try out some more operations on their own.
[bookmark: _Lesson_–_Saving][bookmark: _Toc9426488]Lesson – Saving Variables from Workspace
Learning Objectives:
· Save variables from the Workspace to a file on disk
· Retrieve the saved variables in the Workspace
Motivation:
If you have been working for a while in MATLAB and have created several variables, once MATLAB is closed, all the variables get lost. If you don’t want to redo all that work on reopening MATLAB, then we can store the Workspace variables and use them in the future. We use the save command to store variables from the Workspace to a folder or a directory.
Materials:
· MATLAB
Steps:
1. If students have variables in the workspace, then they can save a variable from there using the save command. E.g.
>> save("my_variables.mat", "p", "q")
Here, a file named "my_variables.mat" will be created to contain the variables p and q. Notice that we are passing the name of file and the variables as a string data type. The extension MAT is used for a file on the computer that contains MATLAB variables.
2. We can also save all the variables in the workspace using the save command. E.g.
>> save("all_my_variables.mat")
3. Ask the students to be careful when saving variables. If they use the same filename to save variables, then if filename already exists, save command will overwrite the file and save only the latest set of variables.
4. Ask the students to try saving all their variables.
5. Once done, ask the students to delete the variables in the Workspace using the clear command.
>> clear
6. They can now retrieve the variables they saved by using the load command. E.g.
>> load("all_my_variables.mat")
Alternately, they could drag the .mat file from the Workspace into the Command Window to load.
[bookmark: _Lesson_–_Using][bookmark: _Toc9426489]Lesson – Using Functions
Learning Objective:
· Understand the syntax for using built-in MATLAB functions
· Use functions with vectors as inputs.
· Use the documentation to get help on functions.
Motivation:
Function is an important programming concept. Students have already been using functions like 'join', 'find', 'save', 'load' and more in the activities prior to this one. Let us now formalize this concept before we use some more functions and eventually write one of our own.
Materials:
· MATLAB
Steps:
1. Explain what a function is, including input, output, and calling syntax.
A function is a program or code or a group of commands that performs a specific task. In that way, it is like a script. Unlike a script however, a function may take one or more inputs and may return one or more outputs. It has three parts with the following syntax:
>> <output variable> = <function name>(<input>)
<function name> - name of the function you want to execute
<input> - this is what the function will be executed on.
<output variable> - this is where the result of the execution is stored.
2. As an example, in the Command Window, type
>> x = sqrt(9)
Here, we are trying to find the square root of 9. The function name is sqrt. The input is 9 (the number we want to find the square root of) and the result, 3, is stored in the output variable x.
Another example is
>> s = max([4 2 9])
Here, the function max, will take the vector [4 2 9] as input and return the maximum value in that vector (9) stored in the output variable s.
3. Ask if the students remember the 'find' and 'join' functions we used for our shopping list program. You can run the following commands (in bold) on your Command Window and let the students observe and discuss what they understand.
a. The 'find' function takes in a vector of numbers as input and returns indices of the non-zero elements as an output.
>> in = [3 0 5 0 0]
in =
 3 0 5 0 0
>> out = find(in)
out =
 1 3
b. The 'join' function takes a vector of strings as an input and gives us a single string as an output. We also saw it in the indexing quiz.
>> in = ["We", "love", "music"]
in =
 1×3 string array
 "We" "love" "music"
>> out = join(in)
out =
 "We love music"
4. Like 'join' and 'find', MATLAB provides thousands of ready-to-use functions which perform specific tasks like 'sqrt' which calculates square-root or 'round' which rounds off the input. Students can try them in the Command Window.
>> x = sqrt(25)
x =
 5
>> y = round(0.7)
y =
 1
Try passing a vector as input, e.g.
>> x = sqrt([25, 16, 81])
>> y = round([1.3, 2.9, 3.4, 7.8])
You can look up a specific function on the documentation such as sqrt by using the command
>> doc sqrt
5. The doc has syntax of the function. Explain that syntax is basically the spelling and grammar of the function. Explain how the function needs to be used.
6. Some popular functions to explore are plot, bar, plot3, life, spy, why. The why, life, and spy commands are particularly fun! Ask them to doc <function name> to explore some of these.
7. You can also write your own functions to use in your programs or share with others. Students will learn to write a function themselves on Day3.
[bookmark: _Activity_–_Playing][bookmark: _Toc9426490]Activity – Playing by numbers
Learning Objective:
· Use and experiment with the syntax for using built-in MATLAB functions
· Use functions with vectors as inputs.
Motivation:
Now that the students are familiar with the concept of functions, they can start using some built-in functions to create music for further practice.
Materials:
· MATLAB
Steps:
1. We have provided some functions specially for this course. One of them is called 'playNumber'.
This function takes an array of numbers as input, and for each note it will play a corresponding tone on the speaker, one after another.
Tell the students to execute the following commands along with you:
>> x = 1:8
>> playNumber(x)
2. Give the students time to explore creating vectors and playing notes. Ask them what they think the function does. How is the input related to the output?
· The function plays a sound whose pitch (and hence, frequency) is related to the numbers. In fact, they are notes arranged in increasing order of frequency according to the even-tempered scale.
3. Some things that the students can try:
· Try out numbers above 8 and below 1.
· Create a simple tune for a song like “Twinkle Twinkle Little Stars” or “Somewhere Over the Rainbow.”
· Once the students have a tune, ask them to move the song up or down an octave.
· Ask the students to save their variables to the Workspace so that they can retrieve them later.
NOTE- If the array/vector gets too long, the function could be playing the notes for a long time. To exit the function, press the keys Ctrl and C simultaneously.
[bookmark: _Activity_-_Happy][bookmark: _Toc9426491]Activity – Happy Birthday song
Learning Objectives:
· Call functions with appropriate input arguments
· Work with scripts – edit and modify
Motivation:
Students will use MATLAB to play the Happy Birthday song!
Materials:
· [image:]MATLAB
· Worksheet "Playing Happy Birthday Song"
· Handout "Music Note Frequencies"
Solution:
>> open HappyBirthdaySong_solution.mlx
Steps:
1. Give students the worksheet and the handout.
2. Tell the students to open the Live Script "HappyBirthdaySong.mlx" by executing the following command in the Command Window:
>> startCode HappyBirthdaySong.mlx
This will open the Live Script for them to complete.
3. The script shows the notes for all four lines of the song. Some lines of code have already been filled for starting. Go over each line and discuss what they think the code does:
The first two lines create variables to save frequencies for two notes: G4 and A4. These frequencies can be looked up in the handout.
The next few lines are calling a function 'sineSound'. The input to this function is a frequency for the note to be played. The four calls to 'sineSound' are for the first four notes of the song.
4. Tell the students to run this script. What they hear should sound wrong. On MATLAB Online, students will see errors as below:
[image:]
Ask them why they think it is so.
· Because all the notes are being played back to back without letting each complete. MATLAB is attempting to play the notes over each other. This cannot be done online currently.
5. Students can correct this by using the 'pause' function. The input to this function is time in seconds. Ask the students to enter the following line of code after each 'sineSound' call:
pause(0.2)
This is what the code should like at this point:
[image:]
Run the script again. These are the first four notes of the song.
Now, the students must complete the first line and second line of the song.
6. Ask them what other variables they will need for this.
· Each unique note in the song will need a variable. These are highlighted in orange. The first two lines use the notes: G4, A4, C5, B4, and D5.
They can look up frequencies in the handout and first fill them in the Worksheet. If students have trouble with this step, you can provide these to them.
[image:]
Then they can create the variables.
7. Finally, they will add lines to call the function 'sineSound' with appropriate input variables and 'pause' with input of 0.2. This is what the script will look like at this point:

[image:]

8. Run the script and if some students complete it faster, they can attempt to play the entire song! They can try adding longer pause in between two lines
This ended up being an awfully long script. Tell the students that there is a way to make this code much shorter and play the entire song with few lines of code. We are repeatedly using the same two functions with different inputs. The faster way to do it is called a 'loop'. We will see that after lunch.
[bookmark: _Toc9426492]LUNCH
[bookmark: _Activity_–_Composing][bookmark: _Toc9426493]Group Activity – Composing a song
Learning Objectives:
· Compose tunes using what was learnt
· Play chords and vary time duration of notes
Motivation:
Let students have fun experimenting.
Materials:
· [image:]MATLAB
· Worksheet "Playing Happy Birthday Song"
· Handout "Music Note Frequencies"
Steps:
1. Students should form groups of three to do this activity.
2. The worksheet has a section for them to compose their own song the same way the notes of the Happy Birthday song were given to them.
3. To aid the students in this activity, a simple keyboard app has been provided. In the APPS tab, click on the music app Simple Keyboard
[image:]
[image:]
4. This will open a keyboard which has the notes written next to the corresponding keys. They can try creating different tunes using this keyboard. In the group:
· One student will play the keyboard to come up with a tune
· Second student will write down the notes of the keys being played
· Third student will find the corresponding frequencies from the handout or from the website provided in the worksheet – www.seventhstring.com/resources/notefrequencies.html
Students can take turns switching the activities within their groups
5. Once students have the sequence of music notes they want to play and their corresponding frequencies, they can write a script for it using the 'sineSound' function in the same way they did for the Happy Birthday song.
Tell the students to begin a new live script in MATLAB. To do this, click the "New Live Script" button in the Home tab:
[image:]

For convenience, tell the students to load a MAT file provided which contains frequencies for all the notes so that they do not have to create variables. To do this, they can add this line at the beginning of their new live script:
load allNotes.mat
6. Encourage the students to make more complicated compositions by:
Changing the tone duration - The 'sineSound' function can take an additional input to specify the time duration for which the tone is played on the speaker.
>> sineSound(G4)
will play a frequency of 392 for 0.2 seconds (default)
>> sineSound(G4,0.5)
 will play the frequency for 0.5 seconds
You can see all the ways of using sineSound by typing:
>>help sineSound
Adding Chords (not supported on MATLAB Online*) - you can play more than one note at the same time by simply not including a pause statement. You can use this to an advantage by playing chords — collections of notes. Or, you can even play more than one line of music at the same time.
*On MATLAB Online, saving the output from sineSound function and using the concept of vector addition covered on Day 4 of this class can be used to compose chords. This can be proposed as a challenge for interested students for the last day if time permits.
7. Additionally, students can also find the music sheets for their favorite songs, get the frequencies of the music notes and use 'sineSound' to play the songs.
8. Students can save the script by clicking on the "Save" button in the Live Editor tab:

[image:]

They can type the name of the script in the dialog: My_Composition then click the "Save" button. The name of the script, like variable names, should not have spaces or start with numbers.
9. You can show the students a script we have provided for example, which uses different tone durations and chords to enhance the Happy Birthday song:
>> open Happy_Birthday_Chords_example.mlx
10. Let the students get busy creating!
[bookmark: _Lesson_–_Using_1][bookmark: _Toc9426494]Lesson – Using 'for' loop
Learning Objectives:
· Identify the need for a loop
· Create a new Live Script
· Learn to create a for-loop
Motivation:
The students have created their musical pieces. In this script, they most likely have repetitive function calls with different inputs.
Recap the Happy Birthday song and open the solution script. Here is the code for playing just the first line of the song:
sineSound(G4);
pause(0.2);
sineSound(G4);
pause(0.2);
sineSound(A4);
pause(0.2);
sineSound(G4);
pause(0.2);
sineSound(C5);
pause(0.2);
sineSound(B4);
pause(0.2);

As you can see, the 'sineSound' and 'pause' function calls are repeated for each tone. This repetition can be eliminated with a combination of vectors and for loops.
Spend time on this section as loops are an important programming concept.
Materials:
· MATLAB
Solution:
>> open Happy_Birthday_for_solution.mlx
Steps:
1. Introduce the activity using the motivation above. You could ask questions such as:
· Did you get tired of typing or copying and pasting the same lines of code repeatedly?
2. Introduce the solution - that is to use for loops.
3. A for loop repeats certain lines of code for a certain set of conditions.
Tell the students to begin a new live script in MATLAB.
4. Type the basic syntax for a for loop as below.
[image:]

Notice that MATLAB automatically adds the end statement and indents the lines inside the for loop to make it is easier to see what is inside and outside the loop.
5. Tell the students that this loop executes the lines between the for and the end statements 6 times. The variable i is the counter. Every time the lines inside get executed, the values of i increase by 1. Once its value reaches 6, the loop ends and the lines after end are executed.
Let the students verify this by adding lines to display the value of i inside the loop and a message after the loop.

 [image:]

After the students type these lines, tell them to save the script with the name Happy_Birthday_for_loop.
Run the code and you should see the output as below:
[image:]

6. The students will now modify this code to play the Happy Birthday song. They will first need to find the number of repetitions. Have the students count the number of times they use sineSound for the first line of Happy Birthday song, and that becomes the length of the loop.
· Answer is 6, since there are 6 notes
So, the for statement remains the same. It goes up to 6.
7. Ask the students what function calls they need to repeat. Type these lines between the for and end statements.
For now, they will call the 'sineSound' function with the first note to the song i.e. G4 and pause for 0.2 seconds. Remember to assign frequency value to variable G4 before the loop.
[image:]
Ask them what this loop will do.
· It will play the frequency G4 6 times.
But we want to play a different frequency each time. How do we do that?
8. We can store all the note frequencies in a numeric vector and use the for loop counter to index into this vector. Have the students follow along as you add these lines to the code and discuss.
We create variables for unique frequencies occurring in the first line of the song.
Next, the freq vector is used to store the frequencies in order of the first line.
Finally, the counter i is used to index into freq vector inside the for loop to play each note one after the other.
[image:]

Spend some time to ensure that students understand what is happening.
In the 1st run i =1, so freq(i) = G4, which holds the value 392.
2nd run: i = 2, so freq(i) = G4 again.
3rd run: i = 3, so freq(i) = A4, which holds the value 440.
And so on until 6.
9. Ask the students to create a for loop for the entire Happy Birthday song. The for loop would need to run from 1 to 25. The students would also need to complete the numeric vector freq for all the 25 notes of the song.

[image:]

10. Finally, having different durations for each note will make the tune closer to the real song. Ask the students how they might do that. They should realize that it can be done in an analogous way as we did frequencies:
· Create a numeric vector containing the time durations of the notes (say, t_dur). Now, the constant value of 0.2 can be replaced by t_dur(i).
sineSound(freq(i), t_dur(i))
pause(t_dur(i))
· You can help the students by giving them a tip about the durations: First two notes of each line can be 0.4 and 0.2 seconds long, respectively. Last note can be 0.8 seconds long and the remaining can be 0.6 seconds each.
Give them some time to play with this. The sample solution is here:
>> open Happy_Birthday_for_solution.mlx
11. If time permits, allow the students to play with these ideas in their scripts (this will be revisited on Day 3):
· Add chords by making the pause duration for those notes to be 0.
· Make the tune slower by multiplying the duration vector (p_dur) with a scalar greater than 1; or faster by multiplying it with a scalar between 0 and 1.
· Similarly, turn the scale (pitch) up or down by multiplying the frequency (freq) vector by a scalar.
· Make the pause duration and frequency duration vectors different, for more flexibility.
· Replace the counter maximum value in the for statement using the length function for better code reusability:
for i = 1 : length(freq)
…
end
Discuss the benefit of doing this with the students
12. Discuss: The length of our code is reduced significantly by using for loops. A lot of repetition was avoided by using loop and vectors.
[bookmark: _Activity_–_Practicing][bookmark: _Toc9426495]Activity – Practicing 'for' loops
Learning Objectives:
Some exercises for students to practice loops. They will be able to:
· Create for loops with a linearly increasing “counting” dummy vector.
· Create for loops over a dummy vector which contains arbitrary elements.
· Use the dummy variable to index into a separate array.
· Use the dummy variable to perform calculations.
· Concatenate number and string using the plus (+) operator.
Motivation:
Students should now have a good understanding of loops. This activity will help reinforce the concept and practice further.
Materials:
· MATLAB
Steps:
1. Explain the motivation and that there are two types of computer loops.
0. Loops that repeat a certain number of times.
0. Loops that repeat forever until something specific happens, (such as when a button is pressed, or a maximum score is achieved, or the user quits, and so forth)
0. The first is called a for loop, the second is called a while loop.
0. We will use a for loop for this example.
1. Explain for loop syntax with a simple script:
1. It begins with “for” and ends with “end.” The code inside is repeated each run through the loop. k is a dummy variable we use for purposes just for the loop.
 for k = 1:6
 k
 end

1. k starts at 1 and ends at 6; the loop runs 6 time
1. the values of k are given as output each time
1. Ask the students what they think the output of the above code will be. Explain.
1. Slow the loop down. As computers are fast, the process happens almost instantaneously, but we can see this in slow motion if we pause the loop each time.
for k = 1:6
 k
 pause(0.5)
end

1. Do some math with k. Remember that k = 1:6 is just a vector. It is the same as k = [1 2 3 4 5 6]. Let’s also do some math with k.
for k = 1:6
 k*3
 pause(1)
end

1. Optional:
Initialize a variable. You can use for loops to repeatedly add to a variable. To do so, you must initialize the variable first.
5. For example, you can use a for loop to multiply a number by 2, 10 times.
for k = 1:10
 x = x*2
end
5. However, the above doesn’t make sense, as we do not know what x is to start off. Therefore, initialize x before the start of the for-loop.
x = 1
for k = 1:10
 x = x*2
end
1. Optional:
Convert numbers to characters. In the ‘k-multiplied by 3’ example, we said “ k ‘multiplied by 3’ but it would be better to say the actual number, which is multiplying by three. How can we combine numbers and strings? (We will need to do this for our note array.)
Using the plus (+) operator with strings will combine the number two strings or a number and string to form a sentence.
for k = [3 5 6 5 2 1]
 k + " multiplied by three is"
 k*3
end 	
1. Optional:
The name k, as all variable names are, is also arbitrary. We could call it anything, for example:
for note = [3 5 6 5 2 1]
 note + " multiplied by three is"
 note*3
end
1. Optional:
The vector [3 5 6 5 2 1] is just a vector. It could have been defined anywhere before, as well.
melody = [3 5 6 5 2 1]
for note = melody
 note + " multiplied by three is"
 note*3
end
1. Optional:
Explain that the variables here are not named coincidentally. The students already have a melody vector corresponding to notes to be played. They can step through the melody vector in a for loop with the variable note being the present note to be played each time.

[bookmark: _Toc9426496]Lesson Plan
[bookmark: _Toc9426497]Goals and Objectives
Day 3 introduces some more advanced programming concepts such as conditional statements, functions and interactive program control flow. Students use all these concepts to make their own instruments – a simple piano and a virtual theremin. These are a basic interactive application which will be controlled using the keyboard and the mouse pointer.
	At the end of this day students should be able to:

	· Refactor their code for better structure
· Create parameters in scripts
· Create a function
· Use logical operations
· Develop intuitive understanding of an interactive program's control flow
· Independently write conditional statements using logical operations

[bookmark: _Toc9426498]Day 3 Overview
	Topic
	Description
	Duration (minutes)

	[bookmark: _Hlk530559065]Adding tunable parameters to script
	Students learn to parameterize their code for ease of use. They will start with a code like the one from end of Day 2 and add some tunable parameters to it.
	30

	Script to function
	Students will convert the script with tunable parameters into a function that accepts these parameters as inputs. They will learn about advantages of using functions.
	30

	Using 'if' statements
	This lesson introduces conditional statements in programming. Students will write a simple 'if…elseif…else' statement to display grades based on score. They will later use conditional statements for creating musical instruments.
	20

	Figure window and callback function
	Students might have seen and/or used interactive apps on phones and the computer before. Students will learn about the figure window in MATLAB, which is a canvas on which all graphics and interactive components are created. They will learn about a special class of functions which make these graphics interactive.
	20

	Instrument - Keyboard Piano
	In this activity, students will use the figure window, one of its callback functions and conditional statements to create a musical instrument using the keyboard – a simple piano. This activity makes use of all the programming concepts learnt on Day 3.
	75+

	Lunch

	Instrument - Virtual Theremin
	Students will make a second instrument using the concept of figure callbacks – a virtual theremin
	60

	Customizing the Theremin
	In this activity, students will make the theremin produce a continuous change in amplitude and frequency based on the mouse pointer position.
	30+

[bookmark: _Activity_–_Adding][bookmark: _Toc9426499]Activity – Adding tunable parameters to script
Learning Objectives:
· Learn to create tunable parameters in code
· Changing pitch and duration of tunes
· Use scalar multiplication
Motivation:
Students used functions and loops on Day 2 to create musical compositions. We can continue to build on that by creating a few parameters. Tweaking these parameters will allow students to create endless variations of the same tune.
Materials:
· MATLAB
Solution:
>> open TuningParameters_solution.mlx
Steps:
[bookmark: _Toc9426500]PART A – Revisiting loops
1. Open the Live Script "TuningParameters.mlx":
>> startCode TuningParameters.mlx
2. This script is just like the one's students created on the previous day for the Happy Birthday song, except that the frequencies are different. Tell the students to run the script. They will hear the same note played 5 times. That is not what we want to hear though. We want to play the frequencies in freq for time durations in t_dur and pause durations in p_dur.
3. There are four corrections needed in the 'for' loop to get the right tune. Ask the students if they can spot these. Correct one by one along with the students as they discover the errors. The students should be able to guide the process. Here is the corrected loop:
for i = 1:14
 sineSound(freq(i), t_dur(i));
 pause(p_dur(i));
end
You can also replace 14 by length(freq) for better reusability of the code.
for i = 1:length(freq)
You can run the script after each change to help the students identify what needs changing.
4. Run the script one final time.
[bookmark: _Toc9426501]PART B – Creating tunable parameters
1. On Day 1, students learnt about how to multiply a scalar with a vector. Revisit the concept. See if the students remember by asking them what the output of the following command will be:
>> 2 .* [1, 2, 3]
Ans is [2, 4, 6]
2. In the script, we have three numeric vectors: freq, t_dur, p_dur
Ask the students to multiply each vector by 2 and discuss what will happen before they run the script.
· We multiplied all the frequencies by 2, so the pitch will increase by twice. We also multiplied the durations by 2, so the speed will reduce by two times.
Run the script.
3. Now, replace these scalar multipliers by new variables: freq_mul, t_dur_mul and p_dur_mul. Then assign scalar values to these before multiplying. Here is how the code must look:
[image:]
These multiplier variables are now "parameters" of their code whose values they can change for different effects.
4. Let the students experiment with other scalars between 0 and 5. They should be able to relate the values of these multipliers to the sound that they hear.
For e.g., try:
freq_mul = 2;
t_dur_mul = 1.5;
p_dur_mul = 1
In this example, they should hear some overlap in the notes because the pause between notes (1 seconds) is less than how long we want each note to play (1.5 seconds).
NOTE- Multiplying p_dur by a large number will make the tune go very slow. Multiplying freq by a large number will make the pitch too high.
[bookmark: _Activity_-_Script][bookmark: _Toc9426502]Activity – Script to function
Learning Objectives:
· Write a function
· Understand how input and output arguments work
Motivation:
Students have been using functions that were pre-defined for them. They did not have to know how functions like find, join or sineSound work. They could simply use them by knowing what the function does. They were also able to use these functions over and over. Students will learn to write their own function for the same benefits – reusability and abstraction.
Materials:
· MATLAB
Steps:
1. Tell the students that they will create their own function in this activity. So far, they have used functions without knowing internal details. Tell the students that this is the benefit of functions. They can be used only by knowing the syntax and what they do.
2. Though MATLAB provides thousands of commonly used functions, programmers often write their own functions to do specific tasks that they need to perform repeatedly with different inputs. In this activity, we will convert the Live script from the previous activity into a Live function.
3. Tell the students to open the file "tune.mlx":
>> startCode tune.mlx
4. Spend some time discussing what the file contains.
It contains three lines of code.
[image:]T
The words highlighted in blue are called "keywords". We have seen blue highlights before: for … end
In this file, the first keyword function tells MATLAB that this is the start of a function. The last keyword, end tells us where the function ends.
5. Now, discuss the first line:
function out = tune(in1, in2, in3)

This is the syntax (grammar) for declaring a function.
· The name of the function is 'tune' which must be same as the name of the file.
· in1, in2 and in3 are inputs the function accepts.
· out is the output given by the function.
6. Between the first and the last line is the "body" of the function. This is a set of operations performed on the inputs to give the output. The body can contain any code. It can also call other functions. Ask the students what this function is doing.
· It is adding the three inputs and assigning the answer to the output.
Notice the "Run" button is disabled. This is because, the function cannot run as is. It needs real input values to replace the placeholders in1, in2 and in3
7. Show the students by executing this in the Command Window:
>> in1 = 1
>> in2 = 2
>> in3 = 3
>> out = tune(in1, in2, in3)
out =
 6
This can be a challenging concept. Students must understand that the input and output names are just placeholders for actual input values. They can, in fact, perform the same calculation and save output in a different variable in place of out:
>> sum = tune(1, 2, 3)
sum =
 6
>> my_output = tune(10,20,30)
my_output =
 60
Similarly, the inputs can have different variables as well:
>> x = 4
>> y = 5
>> z = 6
>> xyz = tune(x, y, z)
xyz =
 15
Let them try some more.

Have the students follow your lead over the rest of this activity.
8. We will modify this function to play our theme song from the previous activity. The function will take the value of multipliers (tuning parameters) as inputs.
Tell the students to delete this line from the "tune.mlx":
out = in1 + in2 + in3;

This is how the file should look now:
[image:]

9. Next, tell the students to open the solution file to previous activity by executing this in the Command Window:
>> open Tuning_Parameters_solution.mlx
This opens our version of their code from the previous activity. Tell the students to copy all the code from this file and paste it in the body of the tune function. This is how the result will look:
[image:]

10. Now, we want to let the function take the three multipliers (tunable parameters) as inputs. Here is how we will achieve that in two steps:
a. Delete the lines defining the values of freq_mul, t_dur_mul, p_dur_mul (highlighted above)
b. Change the three input names to freq_mul, t_dur_mul, p_dur_mul
Here is what the code should be after that:
[image:]

11. As the students may notice, the output is underlined orange. If you hover the cursor over it, it warns that the output has not been set. Recall that functions need not return any output. In this case, the function plays a tune. It does not produce any number or string to return. So, we can remove the out variable and change the line to:
function tune(freq_mul, t_dur_mul, p_dur_mul)
Click the "Save" button
12. This is it! The students have successfully created a function. They can now use it with different input multipliers. Try:
>> tune(2, 1.5, 1.2)
>> tune(4, 1, 1.5)
They can, in fact, close the file and still use this function. They only need to know that the tune() function takes three numeric inputs. The first is a frequency multiplier, second is a time duration multiplier and the third is a pause duration multiplier. It returns no output.
13. Congratulate the students on creating their first function. Recap the important points in a discussion:
· Functions are like scripts in that they contain code to perform a specialized task.
· Unlike a script, functions can take input arguments and return output arguments.
· To use a function, you only must know its name, what inputs it can take and what outputs it will return.
· They make it easy to reuse some code with different inputs.
[bookmark: _Lesson_–_Using_2][bookmark: _Toc9426503]Lesson – Using 'if' statements
Learning Objectives:
· Conditional branching
Motivation:
In programming, decision making is required for deciding which statements will execute in what order. To make music, students will need code that makes decisions based on certain conditions. if… elseif… else statements are a tool that will be useful over the rest of the course
Materials:
· MATLAB
Solution:
>> open find_grade_solution.mlx
Steps:
1. The students will write a program to determine a grade based on the score in an exam. Tell the students to open the file “find_grade.mlx”
>> startCode find_grade
[image:]
This function takes in the exam score as in input and returns the corresponding grade as the output.
2. Now, inside the body of the function, we will write code to determine whether this score corresponds to an A grade or not by using the ‘if’ keyword as shown below. Ask the students to follow along with you.
[image:]
Like the ‘for’ loop and the ‘function’ keyword, ‘if’ also gets an ‘end’ keyword to mark the beginning and end of the ‘if’ statement. We follow the ‘if’ keyword with a condition that needs checking (score >= 80) which can only return a ‘true’ or ‘false’ result. IF the result is true, the code inside the ‘if’ block is executed, otherwise the code inside the ‘else’ block is executed.
3. Ask the students to call this function from the Command Window, first with a score above 80 and ask them what they expect the grade to be. It should be “A”. Then calling the function with a score below 80 should give them a “N/A” grade.
>> grade = find_grade(90)
grade =
 "A"
>> grade = find_grade(75)
grade =
 "N/A"
4. We can also modify the code to check if the student got a B or C grade by including an elseif statement. Tell the students that any number of elseif statements can be included between the if and else statements to specify more conditions if the previous conditions are not true.
[image:]
The && operator checks two or more conditions and only returns true if both are true.
5. Ask the students what the following command will now return
>> grade = find_grade(75)

It should now return grade B as the output.
grade =
 "B"
6. Tell the students to add another elseif statement before the else statement to check for C grade (score between 60 and 40).
7. Optionally, discuss these points at the end or when they are raised as questions:
· When a condition is satisfied, MATLAB will execute the statements for that condition and will not check the remaining conditions following it.
· The >= operator checks if a value is "greater than or equal to".
· Try adding multiple lines of code for one of the conditions.
· [bookmark: _Lesson_–_Importing]Try adding code after end statement.
[bookmark: _Lesson_–_Editing][bookmark: _Lesson_–_Figure][bookmark: _Toc9426504]Lesson – Figure Window and Callback Function
[bookmark: _Hlk530477865]Learning Objectives:
· Understand that the figure window is like a canvas for creating graphics and interactive apps in MATLAB
· Get a working knowledge of callback functions
Motivation:
The students have used several interactive apps by this point. In fact, they might even have used many apps on phones and computers before this. So far, we have learnt some basic programming constructs. In this activity, we will learn to use some building blocks to achieve basic interactivity in a figure window.
Materials:
· MATLAB
Solution:
>> open FigureApp_solution.mlx
Steps:
1. Tell the students that they will create a musical instrument – a piano/keyboard - by the end of this activity.
This first building block for our interactive program will be a figure window. This is like a canvas in MATLAB on which all graphics are created. For example, the plot function they used in the previous activity created the graph in a figure window. The Apps that they have been using were all created inside a figure window.
2. In the MATLAB Command Window, type
>> uifigure
[image:]
This will open a blank figure window. uifigure is a function that by default takes in no inputs and outputs a blank figure window for designing apps. But we can optionally give it some inputs. Try:
>> uifigure("Name","My Figure")
This is open a new figure with the name we selected for it.
[image:]
3. Just like we set the "Name", we can set many other properties for this figure. For example, we can set its "Color". Show the students by executing this in your Command Window:
>> my_fig = uifigure("Name", "My Figure", "Color", "red")
[image:]
Tell them to notice here, that you have also assigned an output from the uifigure. Tell the students that this will allow us to change the properties of this figure even after we have created it. Show them by executing the following command while the figure is still open:
>> my_fig.Color = "green"
Discuss the syntax. We are using the name of the variable followed by a 'dot' followed by the property name. We are using the 'equals' sign to assign this property a new value while the figure is still open.
4. Tell the students to open the script "FigureApp.mlx"
>> startCode FigureApp.mlx
This script is divided into three sections.
5. The first section has one line of code. It is creating a figure window and assigning it to a variable called fig.
The students should be able to tell you what kind of figure window is being created – a figure window whose name is “Musical Instrument”. They also see a new property here called "Visible" which is set to "on". This allows the figure window to pop out when we run the live script.
6. Run this section by clicking the blue bar on the left. A figure window should open. Now discuss with the students if the open figure window is what they expected.
NOTE- Do not close the figure window until instructed to. If a student accidentally closes the figure, re-run the first section.
7. Along with the opened figure window, the command produced an output which shows some properties of this figure:
[image:]
Tell the students to click on all properties. This will display an extensive list of the figure's properties and their values in the Command Window. Tell the students not to worry about all of these. We will only be using a few. If they would like to know more about what any of them means, they can click on Figure to read the documentation.
8. For this musical instrument, we are interested in two properties: KeyPressFcn
KeyReleaseFcn
Tell them to find these in the displayed list (which is in alphabetical order) and see what they are set to. Their value should show empty quotes right now: ' '.
[image:]
9. Tell the students that these properties are "Callback Functions". What this means is that when these properties are set, they should run a function for certain user actions. In other words, this function will be called when a user interacts with the figure in a specific way. For example, every time a user presses a key on the keyboard or releases a key on the keyboard, it will run a function that we define. This is what makes Apps interactive and fun. Let us try a simple example in the next section.
10. Move to the next section. There is a single line:
fig.KeyPressFcn = @Key_Down
There are two new notations here: the . (dot) and the @ (at) symbols.
Let us focus on the left side of the equal sign first.
fig is the name of the variable that we assigned the figure to. It is also called the handle for the figure.
KeyPressFcn is one of the properties of the figure as we saw.
The dot symbol is used to access a property of the figure as we saw before. The syntax is:
<figure_handle>.<property_name>
The KeyPressFcn property was empty as we saw earlier. This means that when the figure is in focus, pressing a key on the keyboard should do nothing. Ask the students to click on the figure (to ensure it is in focus) and press any key on the keyboard to verify that nothing is happening.
11. To assign a new value to this property, we use the equal sign as always. The right side of the equal sign is the new value that we are giving this property. This must be the name of the function we want to run every time we press a key on the keyboard. But just providing the name of the function is not enough. We want the function to run every time a key is pressed. Putting an @ symbol in front of the function name tells MATLAB to run the function when a user presses a key.
12. Tell the students to execute this section. Open and click on the figure window, then try pressing any key on the keyboard. You will see an error:
Undefined function 'Key_Down' for input arguments of type 'matlab.ui.Figure'.
Error while evaluating Figure KeyPressFcn.
13. This error says that we have not defined or created a function named Key_Down which we told MATLAB to look for. Move to the next section. You will see that this function has been created in the white Text area of the Live Script.
Tell the students to select the text and click the "Code" button in the "Live Editor" tab. This will convert the text to code.
[image: C:\Users\plalan\AppData\Local\Temp\SNAGHTMLe603349.PNG]
14. Spend some time discussing what's in the function.
It has two input arguments. Where do these come from?
· MATLAB automatically sends two inputs to the callback function: source and event
· These inputs have information about 'who' called the function (figure, in our case) and 'what' event caused it (key press, in our case).
Inside the function, we just have called the inputs without semi-colons, so that these will be displayed when the function gets called.
15. Tell the students to close the figure. Run the complete script using the "Run" button in the "Live Editor" tab.
Press any key on the keyboard and observe the output in the Command Window.

[image:]

The source is the figure we have created, and the event has information about what caused the callback, like the name of the key that was pressed.

16. We can use this input information to do different things inside our callback function based on which key the user pressed. For example, play different tunes for different keys. This is exactly how we will make our instrument.

17. Students may now try pressing different keys (while keeping the figure window in focus) and keep observing the Command Window as they press the keys. The event information should keep updating to show the keys they are pressing. Close the figure when done. Remember that the callback function is a property of the figure. So, we must have the figure in focus when pressing keys.
[bookmark: _Activity_–_Keyboard][bookmark: _Toc9426505]Activity – Keyboard Piano
Learning Objectives:
· Combine the use of several basic programming constructs.
· Intuitively understand control flow.
Motivation:
By this point, students have learned basics of programming along with some common programming constructs such as the 'if' statement, loops, functions, callbacks etc. Students will now combine several of these to create their first instrument – the piano.
Materials:
· MATLAB
· [image:]Masking Tape (optional)
· Worksheet "Keyboard Piano"
· Handout "Note Frequency"
Solution:
>> open KeyboardPiano_solution.mlx
Steps:
1. Tell the students to open the Live Script "KeyboardPiano.mlx"
>> startCode KeyboardPiano.mlx
This script is like the previous script – it has three sections.
The first section creates a figure window with one new additional property called "Interruptible". This allows our callback function to run each time without interruption.
2. The Key_Down function has a line of code to display the Key that was pressed. Let the students run the Live Script and test by pressing different keys with the figure window in focus. Once done, close the figure window.
3. Ask the students: how would they make a note play when the 'a' key is pressed?
· Use 'if' statement with condition on event.Key
4. Have them follow along with you as you show them how a sine sound of 261.6 Hz can be played for 0.6 s when the key 'a' is pressed. This is what the code should look like:
[image:]

Remember : it is a good practice to parameterize the code.
5. Tell them to run the code and test whether the sound plays when the 'a' key is pressed with focus on figure window. Try pressing the key multiple times to get an intuition on how the code control flows.
6. Now, let us try to change the color of the figure window when the sound is played. Color is a property of the figure which is passed as the input source in the callback.
In MATLAB, a color is specified as a vector with 3 numbers between 0 and 1. The three numbers are for Red, Green and Blue. Students can use the 'Colors' app form their APPS tab to find the vector for their favorite colors.
[image:]

Execute the script and test by pressing the key 'a'.
7. At this point, ask the students if they have ideas of what they can do next to play different sounds for different keys.
· Use elseif statements.
8. The students now have all the tools needed to complete this activity and create their single octave keyboard. They can use the Keyboard Piano Worksheet to fill out the frequencies for this octave in the first table using the Note Frequency Handout.
9. Guide them with hints and steps to complete the code, adding seven 'elseif' statements and using their favorite colors for each note. This is what the code in Key_Down function should look like:
function Key_Down(source,event)

pause(0.2)

key = event.Key
t = 0.6;

if(key == "a")
 sineSound(261.6, t);
 color = [0 0 1];
elseif(key == "s")
 sineSound(293.7,t);
 color = [0 1 0];
elseif(key == "d")
 sineSound(329.6, t);
 color = [1 0 0];
elseif(key == "f")
 sineSound(349.2, t);
 color = [1 1 0];
elseif(key == "g")
 sineSound(392, t);
 color = [0 1 1];
elseif(key == "h")
 sineSound(440, t);
 color = [1 0 1];
elseif(key == "j")
 sineSound(493.9, t);
 color = [1 1 1];
elseif(key == "k")
 sineSound(523.3, t);
 color = [0 0 0];
else
 sineSound(0);
 color = [0.5 0.5 0.5];
end

source.Color = color;

end

10. It is now time to test the piano. Students can run their code and press the keys one by one. To help remember which key corresponds to which note, students can use pieces of masking tape to write the name of the note and cover the keys on the keyboard.
11. There are many songs that can be played with one octave like "Do Re Mi" or "Jingle Bells". The notes are given at the bottom of the Live Script. Students can find more on the internet and try playing them.
12. Finally, students can expand this to include more than one octave using other keys of the keyboard. They can also play something other than pure sine tone. They can experiment with the note duration and with playing chords. The possibilities are endless. Spend some time to discuss ideas and if time permits, students can try them.
NOTE – If using MATLAB Online, students may sometimes see an error dialog while sound is playing. This is because, too many sounds cannot be played simultaneously on MATALB Online unlike the Desktop. Make sure that there is a pause statement in the callback function. If the error is frequent, increase the duration of pause slightly.

[bookmark: _Toc9426506]LUNCH
[bookmark: _Toc9426507]Activity - Virtual Theremin
Learning Objectives:
· Combine the use of several basic programming constructs.
· Use continuously changing window property in a callback function.
Motivation:
In this activity, students will create their second musical instrument – a virtual theremin. This activity uses similar concepts as the keyboard piano activity.
Materials:
· [image:]MATLAB
· Worksheet "Virtual Theremin"
Solution:
>> open VirtualTheremin_solution.mlx
Steps:
1. Briefly revisit the Keyboard Piano activity and revise uifigure window and callback function concepts.
>> open KeyboardPiano_solution.mlx
2. Get the students excited about making their second musical instrument –a theremin. Show them a video of the theremin.
https://youtu.be/-QgTF8p-284
The theremin produces a different pitch and amplitude based on the distance of the hands from the antennas. Since we can't make an actual theremin, we will create a virtual one, where based on where we place our mouse pointer, the theremin will produce a different pitch and amplitude.
3. Ask the students to get the template Live Script "VirtualTheremin.mlx"
>> startCode VirtualTheremin.mlx
4. This starter script has three sections. The first section creates a figure window just like we had for the piano. The inputs to the uifigure function are used to set different properties of this window, as we have seen before.
5. Our virtual theremin will change pitch and amplitude based on the horizontal and vertical location of the mouse pointer (cursor) on this figure. Recall how we made the piano using the 'WindowKeyPressFcn' callback. This callback function executed every time you pressed a key on the keyboard.
Similarly, for this activity, we will use the 'WindowButtonMotionFcn' callback of the figure. Ask the students to guess when this callback function will get executed.
Ans - When you move the mouse pointer (cursor) over the figure.
6. Go over to the next section of code with the students and discuss.
[image:]
7. The next line is supposed to assign the figure's 'WindowButtonMotionFcn'. In the next section, we have written a function called 'Pointer_Moved'. This is the function we want to execute when the mouse pointer is moved.
Tell the students to assign the Pointer_Moved function to the WindowButtonMotionFcn property using the '@' notation. You can refer to the "KeyboardPiano.mlx" script to recall the syntax.
fig.WindowButtonMotionFcn = @Pointer_Moved

8. The 'Pointer_Moved' function has two inputs: source and event just like the piano's Key_Down function.
The source is the uifigure window, to which this callback is linked. Inside the function, we are creating a variable pos to store the current location of the mouse pointer. This information is taken from the CurrentPoint property of the source (uifigure).
Tell the students to run the entire script. A figure window should open. As you move your cursor over this window, you should see numbers displayed in the Command Window. These numbers indicate the current position of the mouse pointer within the figure. The first number tells the location in horizontal direction and the second number tells the location in the vertical direction.
9. Tell the students to fill in Worksheet 1. First, we want to find the minimum and maximum x and y values. To do so, they must try to find the positions of the four corner points in the figure by moving their cursor over them. Ask the students to fill in the corner points in the figure given. The four points will have the values:
[1,1]; [1, 500]; [500, 500] and [500, 1]
going clock-wise starting from bottom left.
And so, the minimum x and y values will be:
xmin = 1
ymin = 1
xmax = 500
ymax = 500
Let the students spend some time moving their pointer over the figure and understanding how the position values change as the mouse pointer moves. We will use these numbers to change sounds as we move the mouse pointer.
10. Tell the students to close the figure window. They will now write code inside the callback function to play different sounds for different horizontal positions, using sineSound function. Ask the students how they might do that.
Ans – Use 'if' statement to check value of x and play a sound.
11. Before writing the code, the students must complete the table in the worksheet which will help them plan the code.
At this point, tell the students to complete the first table for X.
In the first column, they will enter the minimum and maximum x values found previously (1 and 500). Then, they can divide this range by picking any two numbers in between. For e.g., 200.
12. In the second column, they will pick a frequency of sound for each range of X values. For e.g., 440 Hz.
13. Finally, in the third column, they will complete the statements based on the first two columns. This is sentence representation of the code they will write. For e.g., if x is between 1 and 200, Play sineSound(440)
14. The completed worksheet should look something like this (example values used here):
[image:]
15. The students can now try to complete the code after the pause statement inside the function. Get them started by showing them the first 'if' statement on your screen. Each sound should be played for 0.6 seconds.
t = 0.6;
if (x >= 1 && x < 200)
 sineSound(440, t);
16. This is what the code should look like at this point. The range limits and sound frequencies may be different based on the worksheet.
[image:]
Some students may also use multiple 'if' statements instead of 'elseif' and 'else' statements.
17. When the students run their script, moving the pointer horizontally over the figure should produce a change in sound frequency.
18. Finally, students can also change the color of the figure window for different sounds by changing the source.Color property, like we did for the piano activity.
[image:]
19. So far, we are changing the frequency as we move the pointer horizontally. But, we are not changing the amplitude (or volume) yet. The change in frequency is also not continuous.
This is what we will do tomorrow. At this point, allow the students to experiment with their code and try our different sounds, colors, durations etc. They can also break up the code in more than three sections.
NOTE – If using MATLAB Online, students may sometimes see an error dialog while sound is playing. This is because, too many sounds cannot be played simultaneously on MATALB Online unlike the Desktop. Make sure that there is a pause statement in the callback function. If the error is frequent, increase the duration of pause slightly. If it is infrequent and rare, click OK and move the pointer slowly.
[bookmark: _Activity_–_Customizing_1][bookmark: _Toc9426508]Activity – Customizing the Theremin
Learning Objectives:
· Use callback function inputs to control sound parameters and make it continuously changing.
Motivation:
A real theremin's pitch and volume change continuously as the hands move. We want to achieve a similar effect as we move the pointer over the window.
Materials:
· [image:]MATLAB
· Worksheet "Customizing the theremin"
Steps:
1. We started building the theremin in the previous activity. However, it is not complete yet. So far, the frequency change in horizontal direction is not continuous and we are not changing the amplitude in the vertical direction. Ask the students to think about:
· How they would make the sound's frequency change continuously
· How they would make the amplitude change with vertical motion of pointer
The students have seen that the position (x and y) is continuously changing as we move the mouse pointer over the window. Tell them that we can make the value of frequency dependent on x and the amplitude dependent on y. This way, the frequency and amplitude will also change continuously.
2. So far, we used the sineSound function with two inputs: frequency and duration. The sineSound function can also take a third input which specifies the amplitude. This number should be between 0 and 1. Tell the students to try these commands in the Command Window one at a time:
>> sineSound(440, 0.2, 0.1)
>> sineSound(440, 0.2, 1)
3. We will now need to work out the conversion from x and y to frequency and amplitude. Distribute the Worksheet to the students. Explain that we want the frequency to go from a small number up to 2000Hz and we want the amplitude to go from a number close to 0 to 1. Since x and y go from 1 to 500, we must work out a scalar operation to obtain frequency and amplitude from them.
Once the students have completed the Worksheet, they will now have the two lines of code required:
freq = x * 4
amp = y / 500
4. Tell the students to open the starter code by using this command:
>> startCode VirtualTheremin_continuous.mlx
This is the same place we started yesterday. They can now enter the two lines of code toward the bottom of the callback function.
5. Now, they must add code to play the sound using sineSound function. Give them a hint that they need to use freq, t and amp as inputs to the function. They must also be careful about the order of the inputs as it matters.
6. Help the students to complete this function by giving hints. Here is what the code will look like at this stage:
[image:]
7. Students can now run the code and test it by moving the pointer in both directions over the figure. Since we have added a pause statement, moving the cursor slowly will give it a more continuous effect.
8. Finally, to customize their instrument further, students can make the color of the window change continuously along with the sound. Ask them how they would do it.
Hint – Color is specified by three numbers between 0 and 1.
Students can make one or more of the three numbers dependent on x and/or y. Here is an example code that can be entered in the function:
R = x/500;
G = 0.8;
B = y/500;
color = [R G B];
source.Color = color;
Here, we have fixed the green value to 0.8 and made red and blue dependent on x and y. Like the operation for amplitude, we divide by 500 to convert to a number between 0 and 1.

[bookmark: _Toc534285148][bookmark: _Toc534285321][bookmark: _Toc534287067][bookmark: _Toc534285149][bookmark: _Toc534285322][bookmark: _Toc534287068][bookmark: _Toc534285150][bookmark: _Toc534285323][bookmark: _Toc534287069][bookmark: _Toc534285151][bookmark: _Toc534285324][bookmark: _Toc534287070][bookmark: _Toc534285152][bookmark: _Toc534285325][bookmark: _Toc534287071][bookmark: _Toc534285153][bookmark: _Toc534285326][bookmark: _Toc534287072][bookmark: _Toc534285154][bookmark: _Toc534285327][bookmark: _Toc534287073][bookmark: _Toc534285155][bookmark: _Toc534285328][bookmark: _Toc534287074][bookmark: _Toc534285156][bookmark: _Toc534285329][bookmark: _Toc534287075][bookmark: _Toc534285157][bookmark: _Toc534285330][bookmark: _Toc534287076][bookmark: _Toc534285158][bookmark: _Toc534285331][bookmark: _Toc534287077][bookmark: _Toc534285159][bookmark: _Toc534285332][bookmark: _Toc534287078][bookmark: _Toc534285160][bookmark: _Toc534285333][bookmark: _Toc534287079][bookmark: _Toc534285161][bookmark: _Toc534285334][bookmark: _Toc534287080][bookmark: _Toc534285162][bookmark: _Toc534285335][bookmark: _Toc534287081][bookmark: _Toc534285163][bookmark: _Toc534285336][bookmark: _Toc534287082][bookmark: _Toc534285164][bookmark: _Toc534285337][bookmark: _Toc534287083][bookmark: _Toc534285165][bookmark: _Toc534285338][bookmark: _Toc534287084][bookmark: _Toc534285166][bookmark: _Toc534285339][bookmark: _Toc534287085][bookmark: _Toc534285167][bookmark: _Toc534285340][bookmark: _Toc534287086][bookmark: _Toc534285168][bookmark: _Toc534285341][bookmark: _Toc534287087][bookmark: _Toc534285169][bookmark: _Toc534285342][bookmark: _Toc534287088][bookmark: _Toc534285170][bookmark: _Toc534285343][bookmark: _Toc534287089][bookmark: _Toc534285171][bookmark: _Toc534285344][bookmark: _Toc534287090][bookmark: _Toc534285172][bookmark: _Toc534285345][bookmark: _Toc534287091][bookmark: _Toc534285173][bookmark: _Toc534285346][bookmark: _Toc534287092][bookmark: _Toc534285174][bookmark: _Toc534285347][bookmark: _Toc534287093][bookmark: _Toc534285175][bookmark: _Toc534285348][bookmark: _Toc534287094][bookmark: _Toc534285176][bookmark: _Toc534285349][bookmark: _Toc534287095][bookmark: _Toc9426509]Lesson Plan
[bookmark: _Toc9426510]Goals and Objectives
Day 4 is largely about sound mixing and editing in MATLAB. Students will learn that a sound signal is represented as a vector of numbers in MATLAB. They will import sound files into MATLAB and edit it. They will also learn to combine two sound signals end-to-end and to mix them to overlap the sounds. Finally, they will use these techniques to create a composition out of a library of sound files made available to them. The Music Mixer App will aid the process of composing.
	At the end of this day students should be able to:

	· Import and edit sound files in MATLAB
· Understand that a sound signal is represented as a vector of numbers in MATLAB
· Concatenate vectors of sound signals to combine them
· Add two vectors of sound signals to mix them
· Use addition and concatenation in a loop to create melodies

[bookmark: _Toc9426511]Day 4 Overview
	Topic
	Description
	Duration (minutes)

	Importing Sounds into MATLAB
	So far, the students have been creating and playing sounds within MATLAB. Now they will learn how to import sound files from outside into MATLAB. The reason for importing into MATLAB is to edit them.
	20

	Editing Sounds in MATLAB
	In this lesson, students will edit an imported file by cutting out the unimportant portions. They will understand how the imported sound file is represented in MATLAB and finally write the edited sound to a file that can be opened outside MATLAB.
	30

	Creating a sound file for silence
	On Day 3, students learned about importing, editing and exporting sound files. In this lesson, students will learn to represent silence in MATLAB using the 'zeros' function and create a sound file that plays silence.
	20

	Concatenating sound files
	Students will learn to put one sound AFTER another to create a single sound sequence and write it into a file. The process is called concatenation.
	20

	Adding sound files
	Students will learn to put one sound OVER (on top of) another sound to achieve a mixing of two or more sounds and write it to a file. The process in called addition.
	20

	Lunch

	Creating a melody
	In this activity, students will use the previous three lessons along with programming constructs such as 'for' loops and 'if' statements to create a melody by mixing and concatenating sound files from the audio library provided.
	45

	Play with the Music Mixer
	Students will play with the Music Mixer App provided in the course and create melodies interactively. The app allows adding and concatenating notes and percussions.
	15

	Perform as a band
	Students will form a group to perform as a band using the Music Mixer App.
	45

[bookmark: _Toc9426512]Lesson – Importing sounds into MATLAB
Learning Objectives:
· Import sound files to MATLAB
· Understand that sound files are imported as simple numeric vectors
Motivation:
So far students have been using synthesizing basic sounds in MATLAB, but what if students want to use preexisting sound files in MATLAB?
Sound files can be easily imported into MATLAB and edited. Students will have access to a library of sound files of notes from different instruments.
This library was recorded by an orchestra in the UK.
Materials:
· MATLAB
Steps:
1. Ask the students to click on the little plus sign[image:] next to the audio_files folder in Current Folder section to view the other music folders in it. They can use the [image:] and [image:] buttons to navigate the folder structure and take a look at all the different musical notes and percussions available.
[image:]
2. Ask the students to right-click on an MP3 file to Open Outside MATLAB and play the files using the default audio player they have on their computers.
3. Ask them to notice that the audio files have notes of different instruments.
4. Ask them to also notice that there are long durations of silences in the files. So, if they were to string together the audio files like they did in the loops exercise, there would be a lot of silence.
5. We can use MATLAB to change that. Sound files have different extensions. Let’s first look at importing MP3 files.
6. Ask the students to use MATLAB documentation to see if they can find a function in MATLAB to read audio files. The MATLAB documentation can be opened by typing doc at the prompt in the Command Window. Let the students search for a bit.
7. If they type read audio files the first result is the audioread function, which is the function we will be using!
8. Explain that from the documentation it looks like audioread has the syntax:
>> filename = "guitar_A3_very-long_forte_normal.mp3";
>> [y,Fs] = audioread(filename)
filename – is the input argument – the file you want to import. y and Fs are the outputs: y is the sample data of the audio and Fs is the rate at which the samples were collected, or in other words, the number of samples in 1 second of data. The audioread function reads the file and provides the variables y and Fs as outputs.
9. Ask the students to import one of the MP3 files:
>> [y,Fs]= audioread("guitar_B4_very-long_forte_normal.mp3");
10. Once the amplitude values are imported into MATLAB, we can hear the sound by using sound function:
>> sound(y,Fs)
11. We can also view the sound file by using the plot command
 >> plot(y)
[image:]
12. Ask the students to try importing a file and get them to understand that y is the sampled data from the sound wave and is simply a large numeric vector. The command length(y) will tell them how long the vector is or how many numbers the vector contains. Ask them to import, listen to and plot a few different sound files and find out their lengths.
13. We can make changes to the numbers of this numeric vector to make changes to the sound, which we will see in the next section.
[bookmark: _Toc9426513]Lesson – Editing sounds in MATLAB
Learning Objectives:
· Edit imported sound files in MATLAB
· Write the edited sound to an audio file
Motivation:
Sometimes the audio files you have are not in a format that would suit your application, so you might need to edit them. In our case, they have extended periods of silence that need to be removed.
Materials:
· MATLAB
Steps:
1. After listening to the sound files, we notice that there are long durations of silences in the files. So, if the students were to string together the audio files like they did in the loops exercise, there would be a lot of silence. We are now going to use MATLAB to edit these files.
2. The plot command can be used to visualize the sound file and find out where most of the amplitudes lie and what silence periods can be snipped. For instance, the sound files may have amplitudes (useful information about the note) between the samples 20,000 and 60,000.
3. Ask the students to follow along with you for the rest of this lesson.

4. Use audioread to read in the audio file below into variables y, Fs just like in the previous activity and play the sound:
>>[y,Fs] = audioread("guitar_A3_very-long_forte_normal.mp3");
>> sound(y, Fs)
5. Find out the length of the vector y and plot it
>> length(y)
ans =
 275952	
>> plot(y)
[image:]
6. We can see that the data of interest mainly lies within the two vertical red lines, from around samples 80000 (0.8 * 10^5) to 150000 (1.5 * 10^5). We can then snip out the relevant portion of the sound file by using indexing.
	>> y1 = y(80000:150000);
7. Use the length function to find the number of samples in y1.
>> length(y1)
ans =
 70001
8. Play the truncated sound in MATLAB using the functions sound:
>> sound(y1, Fs)
9. Now we can use the function audiowrite to create our own file. Ask the students to check out the documentation for the function to find the correct syntax. The first input argument is the file name to create. The second is the sample data and the sample frequency, which can be the same as the original file.
>>audiowrite("guitar_A3_70001.wav",y1,Fs);
This will create a guitar_A3_70001.wav in the current folder.
To verify that the file was created correctly, students can locate it in the Current Folder and play it outside MATLAB in a media player.
[bookmark: _Toc9426514]Lesson – Creating a Sound File for Silence
Learning Objectives:
· Create a sound file that represents silence in MATLAB.
Motivation:
Students have seen several types of sound files by importing them into MATLAB. They will now create a file that represents silence, and they will use this file in an activity later in the day. Silence is the absence of sound, which is an important aspect of music.
Materials:
· MATLAB
Steps:
1. Ask the students to think of a song where silence is used. An example could be the song “Hello” by Adele. You could play them the song and the students can then have a discussion on the effect silence has on the feel of the song.
2. Sound files have the information stored in them as samples of their wave. Import a sound file in MATLAB and go over this in the with the students.
>>[y1,Fs]=audioread("guitar_A3_7000140000.wav");
Clicking on y1 in the workspace opening the numeric vector in MATLAB to view. It is a vector with 1 column and 40000 rows.
3. Ask the students what the corresponding numeric vector for silence would look like. The numeric vector should be composed of all zeros.
4. To make a numeric vector of zeros in MATLAB, we can do:
>> a = [0 0 0 0 0 0]
To make a bigger vector of about a thousand length, entering the zeros can be tedious. In MATLAB there is a built-in function that lets us create such a large numeric vector.
>> b = zeros(1,6)
Students can see in the Workspace that a and b have the same value. Both are 'row vectors' with 1 row and 6 columns.
Similarly, we can create a 'column vector' of zeros with 1 column and 6 rows:
	>> c = zeros(6,1)
Now, let the students observe the Workspace and ask them how they would create the same vector without using the function zeros. The answer is by using semi-colons as separators just like they see in the Workspace. Try it.
>> d = [0; 0; 0; 0; 0; 0]
We will use column vectors for storing information in our music files just like y1, which is a column vector.
5. Let us make a numeric column vector of the reference size 40000.
>> silence_vector = zeros(40000,1);
6. Once we have this numeric vector, we can create a sound file from it by using the audiowrite command in MATLAB.
>>audiowrite("silence.wav",silence_vector,44100);
The first input is the sound file to create, the second input is the numeric vector of the samples, and the third is the sample frequency of 44100.
7. Execute the commands the students should see the WAV file created in the current folder. Ask them to play the wave file and verify that it is indeed silence.
[bookmark: _Lesson_–_Concatenating][bookmark: _Toc9426515]Lesson – Concatenating Sound Files
Learning Objectives:
· Play notes one after the other
· String notes together, or “concatenate vectors”
· Get familiar with the instrument notes (guitar, trumpet, and violin) in the music library “Audio_Files_40000”
Motivation:
Audio mixing is an important aspect of music. It involves combining, mixing and editing sound files to make new creations or enhance original compositions.
Materials:
· MATLAB
Steps:
1. Using the [image:] and [image:] buttons next to folder names, let’s navigate to the folder audio_files Audio_Files_40000 guitar_short_40000 which will have the files containing different guitar notes. Each guitar note has 40000 samples of the sound wave.
[image:]
2. If we want to create a new sound file which plays two notes of the guitar, say D4 and A4, then the way to do it would be to play the guitar_D4_40000.wav file first and then guitar_A4_40000.wav.
	Timing
	1
	2

	Guitar
	D4
	A4

Combining notes to play one after the other is called Concatenation. Let’s see how we can do concatenation in MATLAB.
3. Read in the sound files:
>>[gd4,Fs]= audioread("guitar_D4_40000.wav");
>>[ga4,Fs]= audioread("guitar_A4_40000.wav");
The gd4 and ga4 variables have samples of the sound wave and Fs contains the sample frequency information. Here g in the variable name stands for guitar, followed by the note. They can have any variable name but having names that are descriptive are useful.
4. To concatenate the files, we would simply create a new vector and place the values one after the other. We can try this with two small vectors in the Command Window:
>> A = [1; 1; 1]
A =
 1
 1
 1
>> B = [2; 2; 2]
B =
 2
 2
 2
>> C = [A; B]
C =
 1
 1
 1
 2
 2
	 2
5. In a similar fashion, to concatenate the samples, we can do:
y = [gd4; ga4];
y now has 80000 samples (40000 samples from gd4 and 40000 samples from ga4)
6. We then use sound to listen to y to confirm it is indeed playing the two notes one after the other.
>> sound(y,Fs)
7. We can then use the audiowrite function to create a music file.
>> audiowrite("concatenate.wav", y, Fs);
8. Ask the students to play this file and verify that they hear the two notes being played one after the other.
9. Let the students concatenate some music notes on their own. They can use the following three instrument folders to practice concatenating notes.
[image:]
[bookmark: _Lesson_–_Adding][bookmark: _Toc9426516]Lesson – Adding Sound Files
Learning Objectives:
· Students will learn how to add sound files together into one sound file.
· Adding essentially plays more than one note at the same time
· Familiarize with the percussion notes in the music library “Audio_Files_40000”
Motivation:
Music often has multiple instruments and notes playing simultaneously. Student will now learn how to add sounds together to play different instruments or percussions at the same time.
Materials:
· MATLAB
Steps:
1. Using the [image:] and [image:] buttons next to folder names, let’s navigate to the folder audio_files Audio_Files_40000 percussion_short_40000 which will have a list of all the percussions available in the music library. Each percussion has 40000 samples of the sound wave.
[image:]
1. Ask the students to play a few of the files to see what sound each percussion file contains. From the MATLAB current folder, right click a sound file and select “Show in Explorer”. This opens a new window from where they can play sounds by double clicking them.
1. If we want to create a new sound file that plays two percussions simultaneously, we simply need to add the values.
	Timing
	1

	Percussion1
	cabasa

	
	+

	Percussion2
	djundjun

Playing beats simultaneously is achieved by Addition. Let’s see how we can do this in MATLAB.
1. Read in the sound files:
>>[p1,Fs] = audioread("cabasa_40000.wav");
>>[p2,Fs] = audioread("djundjun_40000.wav");
As before, the p1 and p2 variables have samples of the percussion sound wave and Fs contains the sample frequency information.
1. To add the files, we would simply need to add the values. Ask the students how they would do it (vector addition was covered on Days 1 and 2). We can try this with two small vectors:
>> A= [1; 4; 5; 1; 2];
>> B= [2; 1; 3; 8; 2];
>> C= A+B
[bookmark: _Hlk534804747]C =
 3
 5
 8
 9
 4
Note that each value in vector A gets added to the corresponding value in vector B.
1. Similarly, to add the sound samples, we can do:
>> y = p1+p2;
NOTE - the numeric vectors to be added should be of the same length, hence we use the reference length of 40000. The students can add any files in the Audio_Files_40000 folder. They can also shorten and add sound clips to this folder.
1. We then use sound to listen to y and confirm it is indeed playing the two notes together
>> sound(y,Fs)
1. We then use the audiowrite function to create a merged music file.
>> audiowrite("merge.wav",y,Fs);
1. Ask the students to play this file and verify that they hear both instruments play simultaneously.
1. Let the students come up with combinations of wave files of their own. For example, they can even try adding a percussion to a violin note.
	Timing
	1

	Percussion
	cabasa

	
	+

	Violin
	G3

[bookmark: _Activity_-_Creating][bookmark: _Toc9426517]LUNCH
[bookmark: _Toc9426518]Activity – Creating a Melody using Addition and Concatenation
Learning Objectives:
· Students will create a script in MATLAB that will allow them to compose and easily create a melody
Motivation:
By now, the students have learnt many programming concepts. This activity combines most of the concepts learnt so far to compose and create a melody. The students will save it as a sound file that they can take with them.
Spend some time on this lesson as it revisits and combines a lot of concepts.
Materials:
· [image:]MATLAB
· Worksheet “Creating a Melody”
Solution:
>> open ProcessSong_solution.mlx
Steps:
1. Distribute the worksheet and show the students the plan for the melody we want to create.
	timing
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	cabasa
	C
	C
	C
	C
	C
	C
	C
	X
	C
	C
	C
	C
	C
	C
	C
	X

	guitar
	G3
	G3
	D3
	D3
	E4
	F4
	G4
	E4
	D3
	C3
	C3
	B3
	B3
	A3
	A3
	G3

	tambourine
	T
	X
	T
	X
	T
	X
	T
	X
	T
	X
	T
	X
	T
	X
	T
	X

X here represents silence or that instrument is not playing. The other letters indicate the notes to be played. In case of the cabasa and tambourine, we have just one note and it is represented by the first letter of the instrument's name.
1. Clear the Workspace and the Command Window:
>> clear
>> clc
1. Tell the students to open the script "ProcessSong.mlx" by running this command in the Command Window:
>> startCode ProcessSong.mlx
This script has starter code which the students will complete in this activity. Each instruction in the script has a hint in form of a function name that they need to use.
1. Review the first section with the students.
1. [image:]In this part, we use the split function to get the notes from a string into a string vector. We have completed the string input for the guitar notes. Students can run this section to observe the guitar variable.
[image:]
Tell the students to complete this section by filling in the string for tambourine and cabasa based on the table above. Remember to use the split function on the strings to get a string vector. The result should look like this.
[image:]
Finally, students can run this section and observe the Workspace. Ask them to relate it to the table in their worksheet.
The variables cabasa, tambourine, and guitar each have 16 elements in their arrays relating to the ‘timing’ row in the Worksheet table.
For each of the 16 timesteps, we will add the three instruments' notes and then concatenate the added results one after the other. This will create our complete melody. Ensure that the students understand this process conceptually.
1. Ask questions to see if they can apply previously learnt concepts to this activity:
· How will they go over all the timesteps?
Use a for loop that goes from 1 to 16
· How will they import the sounds from the audio files into MATLAB?
Use audioread() function and the sound signal will be imported as a vector of numbers. The file name we read will depend on the note from the three vectors.
· What about silence or X?
Two options: Can read the "silence.wav" file they created in previous activity or create a vector of zeros.
· How will they combine the three sounds (or notes) in each time step?
Simply add the three imported vectors like we did in previous lesson
· How will they append the sum to previous timesteps or how will they put the notes one after the other? (tricky concept)
Start with a silence vector 'song' before for loop. In each timestep, concatenate the sum to 'song' and save result back inside 'song'. This will keep the 'song' updated.
· How will the save the final vector into a sound file?
Use audiowrite()
1. Now that we have a plan of action, let the students spend some time going through the starter code. We have filled in the code like reading the guitar notes from file, for reference. Some lines or blocks have been left empty with instructions and two lines of code will need to be modified using the variables created by the students.
The lines in green are just comments to guide and can be deleted when students fill their code.
1. Direct the students to fill in code for one question or sub-question (1 to 6) at a time and discuss the answers for each.
The instructor can reference the solution:
>> open ProcessSong_solution.mlx
1) Create string vectors of same length for different instruments (split())
cabasa = split("C C C C C C C X C C C C C C C X");
tambourine = split("T X T X T X T X T X T X T X T X");
guitar = split("G3 G3 D3 D3 E4 F4 G4 E4 D3 C3 C3 B3 B3 A3 A3 G3");
2) Find total number of notes (length())
N = length(cabasa);
3) Start the song with silence to begin (zeros())
song = zeros(40000, 1);
4) Use for loop to add all instrument notes and concatenate to song
4.0) Start for loop from 1 to the total number of notes (from step 2)
for tstep = 1 : N
 4.1) Read sound file for cabasa (audioread())
 str = cabasa(tstep);

 if str == "X"
 c = audioread("silence_40000.wav");
 else
 c = audioread("cabasa_40000.wav");
 end
 4.2) Read sound file for guitar (audioread())
 str = guitar(tstep);

 if str == "X"
 g = audioread("silence_40000.wav");
 else
 filename = "guitar_" + str + "_40000.wav";
 g = audioread(filename);
 end
 4.3) Read sound file for tambourine (audioread())
 str = tambourine(tstep);

 if str == "X"
 t = audioread("silence_40000.wav");
 else
 t= audioread("tambourine_40000.wav");
 end
 4.4) Add all three sounds and save to a variable called 'x' (+)
 x = c + g + t;
 4.5) Concatenate 'x' with 'song' and save back to 'song' ([;])
 song = [song; x];
End loop
end
5) Play the song with a sampling frequency of 40000 (sound())
Fs = 40000;
sound(song, Fs);
6) Write the song to an audio file with .WAV extension (audiowrite())
[bookmark: _Activity_–_Play]audiowrite('my_song.wav',song,Fs);
[bookmark: _Toc9426519]Activity – Play with the Music Mixer App
Learning Objectives:
· Students will use the Music Mixer app to create music
· They can experiment with different notes and percussions
Motivation:
Students will be able to play with an app provided, the Music Mixer, to gain a better understanding of the concept of combining sounds by adding and concatenating.
Materials:
· [image:]MATLAB
· Handout “Using the Music Mixer App”
Steps:
1. On the APPS tab, click on the “Music Mixer” icon.
[image:]
2. This will open the app shown below. Ask the students to refer to the handout “Using the Music Mixer App” which contains instruction sheet for the all the buttons in the app.

[image:]
3. Note to teacher: Ask the students to follow along with you at this stage. Type the following four music notes in the “Enter ♫ notes” box: D4 A4 G4 E4 and click on the small green play button next to Select Instrument

[image:]
The notes should play using the violin notes from the Audio_short_40000 music library and a plot of the notes should appear. This is concatenating the four notes.
[image:]
4. Ask the students to Select guitar from the “Select Instrument” dropdown and press the small green play button again
[image:]
It should now play the same tune using guitar notes from the Audio_short_40000 music library and update the plot.
5. Now ask the students to select the ‘agogo_bells’ percussion from the first percussion drop-down list
[image:]
6. Since percussions don’t have different notes like the guitar or violin– just one beat – students can add one percussion beat (P1) by clicking on the [image:] button next to Add and add one silence beat (X) by clicking on the [image:] button. Ask them to press [image:], [image:],[image:], [image:] to get P1 X P1 X
[image:]
7. Click on the play button inside the “Add First Percussion” panel. This will play the percussion beats sequence (Concatenating again!) as entered by us and update the plot to show just the percussion.
[image:]
[image:]
8. Now that we have concatenated and played the instrument and percussion beats individually, it’s time to add the instrument and percussion beats. Click on the big green play button to play them together and note the plot. The different colors correspond to different instruments being added one on top of the other.
[image:]
[image:]
9. Ask them to try adding more music notes or percussion beats (e.g. P1 X P1 X P1) and try playing together again. This will not work unless the number of music notes equals the number of percussion beats.
[image:]
10. The [image:] button in the percussion panels can be used to remove a beat from a percussion sequence.
11. Give the students a few mins to gain familiarity with the app.
[bookmark: _Group_Activity_–][bookmark: _Toc9426520]Group Activity – Perform as a Band
Learning Objectives:
· Work in a team to create music
Motivation:
This is a group activity for students to come together to create their own composition and play like a band.
Materials:
· [image:]MATLAB
· Worksheet “Create a Melody of Your Own”
Steps:
1. Ask students to form groups of three or four students. They will use the app to form a music band.
2. Each student will be responsible for one music instrument. Ask them to pick different instruments from the ones available in the app. Students can use the worksheet to fill in notes they want to play.
i. One student will enter the music notes for the guitar/violin/trumpet.
ii. NOTE- For some help with notes of a couple of popular rhymes to get started, at the prompt in the Command Window, type in
>> open songNotes.mlx
iii. Other students (2 – 3) will produce a sequence of beats for a percussion of their choice (example: cabasa, bass drum, cymbals, etc.). So, everyone in the group is responsible for playing one instrument each.
iv. All percussion beats and music notes should be the same length
v. They should fill out the worksheet with their melody – Creating a Melody (Day 4)
3. Once everyone in the group is ready, they will hit ‘Play’ in each of their apps to play all the sounds together as a band!
[bookmark: _Activity_–_Creating][bookmark: _Activity_-_Virtual]

[bookmark: _Toc9426521]Lesson Plan
[bookmark: _Toc9426522]Goals and Objectives
The objective for Day 5 is to have students enthused about their learning experience, and to provide a satisfactory conclusion to their work, regardless of the level of their programming and musical mastery. Students will have the afternoon free to explore coding as well as to tidy up any loose ends from the week’s projects.
For the first half of the day, students will create their own music file using concepts from Day 4. This is a review of addition, concatenation, importing and editing sound files.
At the end of the day, students will be given time to explore the concepts covered throughout the week. Students may take this as a completely open-ended activity to program what they like.
Finally, time will be set aside to draw the course to a conclusion and to ensure that students take with them all the files they will need.

[bookmark: _Toc9426523]Day 5 Overview
	Topic
	Description
	Duration (minutes)

	Creating a music file of your own
	The Music Mixer App does not allow one to save the melodies to a file. To do that, students will write code in MATLAB to create the same melody they created in the App. This script will look like the previous one they created.
	45

	Lunch

	Preparing for a musical concert
	Students can spend time creating or completing their music projects. They can apply concepts and ideas covered throughout the course to create their own compositions and explore MATLAB. Additional time can be allotted for the students to showcase their projects to guests and other students.
	90+

	Wrap-up
	Use this time to make sure students have access to course files and their project files after the course.
	30

[bookmark: _Activity_–_Customizing][bookmark: _Toc9426524]Activity – Creating a Music File of Your Own
Learning Objectives:
· Use MATLAB to save compositions to .WAV files which can be shared externally
Motivation:
The Music Mixer app lets you experiment, but students cannot create music files from it. They need to use MATLAB for that!
Materials:
· [image:]MATLAB
· Worksheet “Creating a Melody of your own”
Steps:
1. Tell the students they now have all the necessary tools under their belt.
2. They are now free to create their own melody using the Music Mixer app by applying all the concepts they learned earlier in the day. The worksheet has tables that they could fill with the notes of their melodies.
3. Music files are usually stored as WAV or MP3 or MP4 formats for sharing. The app does not allow them to save their melody as a music file. It is simply there to help students come up with a combination of sounds they like. If they want to extract the melody they created as a WAV file so that they can play it for their parents and friends, they will need to write a program in MATLAB for it.
4. Their program will be like the one they wrote for the first melody in the worksheet, the only things that will change are:
a. the beat sequences
b. the names of the instruments
c. the number of times the for loop should run
d. additional percussion instrument/s
5. Help them write a program that allows them to create the melody and save to a file. To get the students started, we have provided a template for this exercise. They can use it if they like:
>> startCode ProcessSong2.mlx
6. They can either chose to write a program for the melody they created as a band, or they can create a new melody.
[bookmark: _Toc9426525]LUNCH
[bookmark: _Activity_–_Preparing][bookmark: _Toc9426526]Activity – Preparing for a Music Concert! (60+ minutes)
Learning Objectives:
Students will be able to spend time on any of the projects they have been working on. They can now also create a final project using what they have learned in the course.
Motivation:
Students will be preparing to show their peers some of what they have been working on during the week.
Steps:
1. Congratulate the students on having essentially completed the course.
2. We took them down many paths in the learning of computer programming, but we didn’t have enough time to explore them fully.
3. Students now have time to spend on some of the projects they have been working on during the week. Tell them that after some time they will be showcasing their work for their peers in a final music concert!
4. They are free to explore MATLAB and music in any way they like. However, so that they don’t get lost, remind them what we did in the course. Point them to the handout for the list of MATLAB functions that they used during the week.
5. Although the students generally programmed alone in this course, professional computer programmers often code with a partner. The students can feel free to do so (or not) from here on out. There are many benefits of coding in pairs:
· Brainstorming allows them to come up with better ideas.
· Two heads are better than one when it comes to remembering syntax.
· It can be challenging, but also fun, to work with a partner.
6. Listed below are some of the paths taken in the course with an example of a project to work on:
Topics previously covered include:
a. Decision making.
i. if statements
b. for loops
c. Making musical compositions:
i. Polish an existing song or create a new song
ii. Try to reproduce an existing song the students know
iii. Take a movie trailer from YouTube, mute it if it has music, and add your own soundtrack
iv. The function sineSound has a fourth syntax which can be used to get as output the numeric vector representing the sine sound. Students can use this to perform addition and concatenation just like we did on Day 4 to create complex compositions with chords. To play this vector, students can use the sound() function.
d. Developing a musical instrument:
i. Add additional functionality to the keyboard piano or the theremin
ii. Create your own special sound effect in addition to the ones included
e. Additional programming concepts:
i. Random numbers: Use random numbers to add chance to your music or game
ii. Plotting - Plot geometrical figures in a variety of styles and colors
iii. Error handling (Challenging)
iv. Recursion (Challenging)
7. [bookmark: _Activity_–_Wrap]Give the students time to develop their projects and put some final additions on their work. Have the students gather around and present their work. You could ask them to describe what they created and what programming concepts they used to do this.
[bookmark: _Toc9426527]Activity – Wrap Up (30 minutes)
Learning Objectives:
· Leave with all available materials to continue programming at home.
· Save relevant work to share with their parents or guardians.
Motivation:
Our course time is winding down. Before you go, let’s make sure you have everything saved and know how to access the material at home.
Materials:
· USB stick (if MATLAB is installed on local computer)
NOTE- It is important to have the aids help the students copy and paste the files appropriately. Check to make sure each student has everything saved that they need saved.
Steps:
1. Tell the students to save their musical creations to MP3 files.
If using MATLAB installed on local computer:
· Distribute USBs.
· Have the students insert the USBs into their computers.
· Open two Windows Explorer windows:
· One for their i2 directory, and one for their USB directory.
· Copy and paste from the i2 to USB directories:
· Music (into the “Music” folder)
· Code files
If using MATLAB Online:
· The files for this course will be available for students to access from any other computer with internet access, since they are saved on their MATLAB Drive account. To access these files, go to the following web address and sign in using the MathWorks account credentials: https://drive.matlab.com
· Note that the files are available to the students irrespective of whether they have a license for MATLAB as these are saved on MATLAB Drive. To learn more about MATLAB Drive, see https://www.mathworks.com/products/matlab-drive/frequently-asked-questions.html
To open and work with the MATLAB code and data files on MATLAB Online, students must have a license associated with their MathWorks account.
· If the students want to use these files on MATLAB installed on a local computer and not on MATLAB Online, they can download and use the Drive Connector. For more information, visit:
https://www.mathworks.com/help/matlabdrive/ug/install-matlab-drive.html
2. Ask the students if they have any questions they would like to ask about programming or thoughts they would like to share.
3. Congratulate the students on becoming programming experts!

[bookmark: _Toc9426528]Appendix
[bookmark: _Toc9426529]Suggested Instructor Prework
MATLAB Onramp is a free online interactive tutorial for anyone getting started with MATLAB. Below is a list of chapters we recommend going through in preparing for teaching this course in MATLAB.
Link to MATLAB Onramp
	MATLAB Onramp
Chapters
	Bytes and Beats Activities

	Chapter 1: MATLAB Desktop
Familiarize yourself with the MATLAB interface.
1. Course Overview

	Day 1
· Using MATLAB to Visualize Sounds
· Fun with MATLAB

	Chapter 2: Commands
Enter commands in MATLAB to perform calculations and create variables.
1. Entering Commands
2. Storing Data in Variables
3. Using Built-in Functions and Constants
4. Desktop Overview

	Day 1
· Using MATLAB as a Calculator
· Diner Shares Activity
Day 2
· Using Functions

	Chapter 3: Vectors and Matrices
Create MATLAB variables that contain multiple elements.
1. Manually Entering Arrays
2. Creating Evenly-Spaced Vectors
3. Array Creation Functions

	Day 1
· Shopping List Activity: Task 2
Day 4
· Creating a sound file for silence

	Chapter 5: Indexing into and Modifying Arrays
Use indexing to extract and modify rows, columns, and elements of MATLAB arrays.
1. Indexing into Arrays
2. Extracting Multiple Elements
3. Changing Values in Arrays

	Day 1
· Shopping List Activity: Task 2
Day 2
· Fun with Indexing
Day 4
· Editing Sounds in MATLAB

	Chapter 6: Array Calculations
Perform calculations on entire arrays at once.
1. Performing Array Operations on Vectors

	Day 2
· Shopping List Activity: Task 3
Day 4
· Concatenating Sound Files
· Adding Sound Files
· Creating a Melody using Addition and Concatenation
· Creating a Music File of your own

	Chapter 11: MATLAB Scripts
Write and save your own MATLAB programs.
1. The MATLAB Editor
2. Running a Script
	Nearly all the activities from Day 1 to Day 5 in this course use scripts.

	Chapter 13: Programming
Write programs that execute code based upon some condition.
1. Flow Control
2. For Loops

	Day 2
· Using 'for' loop
· Practicing 'for' loops (optional)
· Practicing 'while' loops (optional)
Day 3
All activities
Day 4
· Creating a Melody using Addition and Concatenation
Day 5
· Creating a Music File of your own

[bookmark: _Toc9426530]Other Resources:
Basics of MATLAB
Functions

[bookmark: _Toc9426531]General troubleshooting tips
>>setupBnB does two things:
1. It unzips coursefiles.zip and adds it to MATLAB's search path i.e. where MATLAB can find the files in it.
2. It installs the toolbox (code files and apps) required for this course.
During the class, if a student has an 'Undefined function or variable' error while using sineSound, startCode or playNumber functions or reading files from the audio library, check for any spelling mistakes in code. If there are no errors, run >>setupBnB again from the Desktop or MATLAB Drive folder (as applicable).
MATLAB Online
· Refresh the web page by pressing F5 key if MATLAB seems to be stuck at a process for a long time
· If this does not help, try clearing cookies in the browser:
Chrome - https://support.google.com/chrome/answer/95647
Edge - https://support.microsoft.com/en-us/help/4027947/windows-delete-cookies

© The MathWorks, Inc. 2019. MATLAB is a registered trademark of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Music Clips are provided by The Philharmonic Orchestra under a Creative Commons Attribution-ShareAlike 3.0 Unported License. The license agreement can be found at http://creativecommons.org/licenses/by-sa/3.0/deed.en_GB. If you remix, transform, or build upon the material, you must distribute your contributions under the same license.
[bookmark: _GoBack]
image1.jpeg

image69.png

image70.png

image71.png

image72.png

image73.png

image74.png

image75.png

image76.png

image77.png

image78.png

image79.png

image80.png

image81.png

image82.png

image83.emf
024681012141618

10

4

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

image84.png

image85.png

image86.png

image87.png

image88.png

image89.png

image90.png

image91.png

image92.png

image93.png

image94.png

image95.png

image96.png

image97.png

image98.png

image99.png

image100.png

image101.png

image102.png

image103.png

image104.png

image105.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image66.png

image67.png

image68.png

