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Feedback Control Systems
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Feedback Control Topics

• Part 1

– Control System Types

• Open-Loop Control: Basic & Feedforward 

• Closed-Loop Control

– Block Diagrams and Loading Effects

– Generalized Feedback Control Block Diagram

– Feedback Control Transfer Functions

– Sensitivity of Control Systems to Parameter Variation

– Negative Feedback and Op-Amps

– Instability in Feedback Control Systems
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Control System Types

Everything Needs Controls

for Optimum Functioning!

• Process or Plant

• Process Inputs

‒ Manipulated Inputs

‒ Disturbance Inputs

• Response Variables

Control systems are an integral part

of the overall system and not

after-thought add-ons!

The earlier the issues of control are 

introduced into the design process, the 

better!

Why Controls?

• Command Following

• Disturbance Rejection

• Parameter Variations

Plant

Manipulated

Inputs

Disturbance

Inputs

Response

Variables
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• Classification of Control System Types

– Open-Loop

• Basic

• Input-Compensated Feedforward

– Disturbance-Compensated

– Command-Compensated

– Closed-Loop (Feedback)

• Classical (e.g., PID)

– Root-Locus

– Frequency Response

• Modern (State-Space)

• Advanced

– e.g., Adaptive, Fuzzy Logic
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Basic Open-Loop Control System

Satisfactory if:
• disturbances are not too great

• changes in the desire value are not too severe

• performance specifications are not too stringent

Plant

Control

Director
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of

Controlled Variable

Controlled 
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Open-Loop Input-Compensated Feedforward Control:

Disturbance-Compensated

• Measure the disturbance

• Estimate the effect of the disturbance on the 

controlled variable and compensate for it

Plant

Control

Director

Control

Effector

Desired Value
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Controlled Variable

Controlled 

Variable

Plant Disturbance Input

Plant
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Input

Flow of Energy
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• Disturbance-Compensated Feedforward Control

– Basic Idea: Measure important load variables and take corrective 

action before they upset the process.

– In contrast, a feedback controller, as we will see, does not take 

corrective action until after the disturbance has upset the process 

and generated an error signal.

– There are several disadvantages to disturbance-compensated 

feedforward control:

• The load disturbances must be measured on line.  In many applications, 

this is not feasible.

• The quality of the feedforward control depends on the accuracy of the 

process model; one needs to know how the controlled variable responds 

to changes in both the load and manipulated variables.

• Ideal feedforward controllers that are theoretically capable of achieving 

perfect control may not be physically realizable.  Fortunately, practical 

approximations of these ideal controllers often provide very effective 

control.
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Open-Loop Input-Compensated Feedforward Control:

Command-Compensated

Based on the 

knowledge of plant 

characteristics, the 

desired value input is 

augmented by the 

command compensator 

to produce improved 

performance.
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Plant Disturbance Input
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• Comments:

– Open-loop systems without disturbance or command 

compensation are generally the simplest, cheapest, and most 

reliable control schemes. These should be considered first 

for any control task.

– If specifications cannot be met, disturbance and/or 

command compensation should be considered next.

– When conscientious implementation of open-loop 

techniques by a knowledgeable designer fails to yield a 

workable solution, the more powerful feedback methods 

should be considered.
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Closed-Loop (Feedback)

Control System

Open-Loop Control System

is converted to a

Closed-Loop Control System by 

adding:

• measurement of the controlled variable

• comparison of the measured and desired values of the controlled 

variable

Plant

Control

Director

Control

Effector
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Variable
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• Basic Benefits of Feedback Control

– Cause the controlled variable to accurately follow the 

desired variable; corrective action occurs as soon as the 

controlled variable deviates from the command.

– Greatly reduces the effect on the controlled variable of all 

external disturbances in the forward path.  It is ineffective 

in reducing the effect of disturbances in the feedback path 

(e.g., those associated with the sensor), and disturbances 

outside the loop (e.g., those associated with the reference 

input element).

– Is tolerant of variations (due to wear, aging, environmental 

effects, etc.) in hardware parameters of components in the 

forward path, but not those in the feedback path (e.g., 

sensor) or outside the loop (e.g., reference input element).
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– Can give a closed-loop response speed much greater 

than that of the components from which they are 

constructed.

• Inherent Disadvantages of Feedback Control

– No corrective action is taken until after a deviation in 

the controlled variable occurs.  Thus, perfect control, 

where the controlled variable does not deviate from the 

set point during load or set-point changes, is 

theoretically impossible.

– It does not provide predictive control action to 

compensate for the effects of known or measurable 

disturbances.
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– It may not be satisfactory for processes with large time 

constants and/or long time delays.  If large and frequent 

disturbances occur, the process may operate continually 

in a transient state and never attain the desired steady 

state. 

– In some applications, the controlled variable cannot be 

measured on line and, consequently, feedback control is 

not feasible.

• For situations in which feedback control by itself is not 

satisfactory, significant improvements in control can be 

achieved by adding feedforward control. 
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Block Diagrams & Loading Effects

• A block diagram of a system is a pictorial representation of the 

functions performed by each component and of the flow of 

signals. It depicts the interrelationships that exist among the 

various components.

• It is easy to form the overall block diagram for the entire system 

by merely connecting the blocks of the components according 

to the signal flow.  It is then possible to evaluate the 

contribution of each component to the overall system 

performance.

• A block diagram contains information concerning dynamic 

behavior, but it does not include any information on the 

physical construction of the system.
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• Many dissimilar and unrelated systems can be represented 

by the same block diagram.

• A block diagram of a given system is not unique.  A 

number of different block diagrams can be drawn for a 

system, depending on the point of view of the analysis.

• Blocks can be connected in series only if the output of one 

block is not affected by the next following block.  If there 

are any loading effects between components, it is 

necessary to combine these components into a single 

block.
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Some Rules of Block Diagram Algebra
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Loading Effects

• The unloaded transfer function is an incomplete 

component description. 

• To properly account for interconnection effects one must 

know three component characteristics:

– the unloaded transfer function of the upstream 

component

– the output impedance of the upstream component

– the input impedance of the downstream component

• Only when the ratio of output impedance over input 

impedance is small compared to 1.0, over the frequency 

range of interest, does the unloaded transfer function give 

an accurate description of interconnected system behavior.
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• In general, loading effects occur because when analyzing 

an isolated component (one with no other component 

connected at its output), we assume no power is being 

drawn at this output location.

• When we later decide to attach another component to the 

output of the first, this second component does withdraw 

some power, violating our earlier assumption and thereby 

invalidating the analysis (transfer function) based on this 

assumption.

• When we model chains of components by simple 

multiplication of their individual transfer functions, we 

assume that loading effects are either not present, have 

been proven negligible, or have been made negligible by 

the use of buffer amplifiers.
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Two RC Low-Pass Filters in Series
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Loading-Effects Example
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• Earlier block diagrams have been of a general functional nature.  

Now it is appropriate to begin using the working operational 

block diagrams necessary for actual system design and analysis.

• These use the transfer function concept which allows the block 

diagram to communicate the numerical details of component and 

system behavior.  The figure identifies the basic functional 

components from which all feedback systems are built.  Two 

types of quantities require definition: signals and systems.  

– Signals are the physical variables (e.g., voltage, pressure, 

temperature, etc.) that "flow" from one system component to 

another.

– Systems are the hardware components that perform the 

necessary operations.  System descriptions consist of the 

transfer functions A(s), G(s), etc., which are shorthand graphic 

means of stating the component's differential equation.
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• Signal V is the desired value of the controlled variable C with 

the same units as C.  V may or may not exist as an actual 

physical quantity.

• The fact that signals V and R, the reference input element, 

need not be the same quantity is one reason the standard 

diagram provides the transfer function A(s), the reference 

input element.  The reference input element can, when 

necessary, perform a simple function, e.g., an algebraic 

conversion, or a more sophisticated function, e.g., command 

compensation or noise filtering.

• The summing junction represents the comparison, E = R - B, 

of the reference input with the feedback signal B.  The 

summing junction cannot change the units of R and B, 

therefore R, B, and E always have exactly the same 

dimensions.
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• The feedback element H(s) is often a sensor for measuring 

C.  But its functions sometimes include more than simple 

measurement, therefore feedback element is used rather 

than sensing element for its name.

• System error is logically defined as V - C, therefore 

actuating signal is a more appropriate term for E since E = 

V - C only if A(s) = H(s) = 1.0, which is sometimes true, 

but often not true.

• Gc(s) represents the control elements, containing the 

functions of both controller and actuator.

• G(s) represents the controlled system elements or the 

process/plant to be controlled.
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• Controlled variable C is influenced by both manipulated variable 

M and disturbance D.  Since the effect on C of D and M would in 

general be different, the path from D to C is often provided with a 

disturbance input element transfer function (not shown), allowing 

completely independent specification of C/D and C/M 

relationships.  This transfer function is not system components 

intentionally added by the designer to allow the disturbance entry 

to the system, but rather the necessary modeling of the 

unavoidable effect of D on C. The same applies to the sensor 

disturbance input N(s).
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• The figure defines the basic types of signals and 

components necessary for description of any feedback 

control system.  However, it must be adapted to the needs 

of each specific design.  For example, disturbances may 

enter the system at several locations, not just at the process 

or sensor.  This is easily accommodated by providing 

suitable located summing junctions and defining 

disturbances with corresponding disturbance input 

elements.  

• Finally, when we deal with a specific application, rather 

than the abstract generality of the figure, it is preferable to 

use standard signals as subscripts on symbols which relate 

more directly to the physical variables involved, e.g., 

desired temperature value, TV, and controlled variable, TC.
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Sensitivity Analysis

• Consider the function y = f(x).  If the parameter x changes 

by an amount x, then y changes by the amount y.  If x 

is small, y can be estimated from the slope dy/dx as 

follows: 

• The relative or percent change in y is y/y.  It is related to 

the relative change in x as follows:

dy
y x

dx
  

y dy x x dy x

y dx y y dx x

   
   

 
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• The sensitivity of y with respect to changes in x is given 

by:

• Thus

• Usually the sensitivity is not constant.  For example, the 

function y = sin(x) has the sensitivity function:

y

x

x dy dy / y d(ln y)
S

y dx dx / x d(ln x)
  

y

x

y x
S

y x

 


 
 
   

y

x

xcos xx dy x x
S cos x

y dx y sin x tan x
   
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• Sensitivity of Control Systems to Parameter 

Variation and Parameter Uncertainty

– A process, represented by the transfer function G(s), is 

subject to a changing environment, aging, ignorance of 

the exact values of the process parameters, and other 

natural factors that affect a control process.

– In the open-loop system, all these errors and changes 

result in a changing and inaccurate output.

– However, a closed-loop system senses the change in the 

output due to the process changes and attempts to 

correct the output.

– The sensitivity of a control system to parameter 

variations is of prime importance.
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– Accuracy of a measurement system is affected by 

parameter changes in the control system components 

and by the influence of external disturbances.

– A primary advantage of a closed-loop feedback control 

system is its ability to reduce the system’s sensitivity.

– Consider the closed-loop system shown.  Let the 

disturbance D(s) = 0.

+ -


C(s)R(s)
G

c
(s) G(s)

H(s)

E(s)

B(s)
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
+

+
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– An open-loop system’s block diagram is given by:

– The system sensitivity is defined as the ratio of the 

percentage change in the system transfer function T(s) 

to the percentage change in the process transfer 

function G(s) (or parameter) for a small incremental 

change:
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T / T T G
S
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– For the open-loop system 

– For the closed-loop system
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– The sensitivity of the system may be reduced below 

that of the open-loop system by increasing GcGH(s) 

over the frequency range of interest.

– The sensitivity of the closed-loop system to changes in 

the feedback element H(s) is:

 
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– When GcGH is large, the sensitivity approaches unity 

and the changes in H(s) directly affect the output 

response.  Use feedback components that will not vary 

with environmental changes or can be maintained 

constant.

– As the gain of the loop (GcGH) is increased, the 

sensitivity of the control system to changes in the plant 

and controller decreases, but the sensitivity to changes 

in the feedback system (measurement system) becomes 

-1.

– Also the effect of the disturbance input can be reduced 

by increasing the gain GcH since:

 
 

     
 

c

G s
C s D s

1 G s G s H s
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• Therefore:

– Make the measurement system very accurate and 

stable.

– Increase the loop gain to reduce sensitivity of the 

control system to changes in plant and controller.

– Increase gain GcH to reduce the influence of external 

disturbances.

• In practice:

– G is usually fixed and cannot be altered.

– H is essentially fixed once an accurate measurement 

system is chosen.

– Most of the design freedom is available with respect to 

Gc only.
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• It is virtually impossible to achieve all the design 

requirements simply by increasing the gain of Gc.  The 

dynamics of Gc also have to be properly designed in order 

to obtain the desired performance of the control system. 

• Very often we seek to determine the sensitivity of the 

closed-loop system to changes in a parameter  within the 

transfer function of the system G(s).  Using the chain rule 

we find:

• Very often the transfer function T(s) is a fraction of the 

form:

T T G

GS S S 

N(s, )
T(s, )

D(s, )


 


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– Then the sensitivity to  (0 is the nominal value) is 

given by:

0 0

T N DT / T ln T ln N ln D
S S S

/ ln ln ln
  

 

   
     
       
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Negative Feedback and Op-Amps
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Instability in Feedback Control Systems

• All feedback systems can become unstable if 

improperly designed.

• In all real-world components there is some kind of 

lagging behavior between the input and output.

• Instantaneous response is impossible in the real 

world!

• Instability in a feedback control system results 

from an improper balance between the strength of 

the corrective action and the system dynamic lags.  
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Example
• Liquid level C in a tank is 

manipulated by controlling the 

volume flow rate M by means 

of a three-position on/off 

controller with error dead 

space EDS.

• Transfer function 1/As

between M and C represents 

conservation of volume 

between volume flow rate and 

liquid level.

• Liquid-level sensor measures 

C perfectly but with a data 

transmission delay dt.

Tank Liquid-Level Feedback Control System

Area A

+M -M

EDS

C(t)
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Area A

+M -M

EDS

C(t)

A (m2) = constant

EDS = error dead space = 0.2 m 

C(t) = height of fluid in tank (m)

M = Volume Flow Rate (m3/s)

(+M, -M, or 0 are possible)

DT
There is a time delay 

(seconds) in 

transmitting the fluid 

level measurement to 

the controller.

Objective

Fill the tank to the desired level 

C ± ½ EDS and stop.

Incompressible Fluid

Conservation of Volume
dC

A M
dt



Fluid Storage

Tank
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K = 1/A

R = reference input

RS = step reference input

B = feedback signal

E = actuating signal

M = manipulated input

C = controlled variable

dC
A M

dt

ADC M




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MatLab / Simulink Block Diagram

Instability in a feedback control system results from an 

improper balance between the strength of the corrective action 

(here the combination of M and 1/A) and the system dynamic 

lags (here the transport delay). 

M = 5, A = 2, tau_dt = 0.2 : unstable

M = 3, A = 2, tau_dt = 0.1 : stable

Tank Level Feedback Control System

Three-Position
On-Off Controller

Transport Delay

Sum
Step Input

Sign

s

1/A

Plant

Flow_Rate

M

M

Flow RateDead Zone

C

C

B

B



Feedback Control Systems K. Craig     50
0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

3.5

time (sec)

signal C: solid

signal B: dotted

signal 0.1*M: dashed

Stable Operation

M = 3, A = 2,

tau_dt = 0.1
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-0.5

0

0.5

1

1.5

2

2.5

3

3.5

time (sec)

signal C: solid

signal B: dotted

signal 0.1*M: dashed

Unstable Operation

M = 5, A = 2,

tau_dt = 0.2


