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MatLab Introduction

• MatLab and the MatLab Environment
• Numerical Calculations
• Basic Plotting and Graphics
• Matrix Computations and Solving Equations
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MatLab Environment
• MatLab

– Matrix Laboratory
– MatLab is an interactive system and programming 

language for general scientific and engineering 
computation.  Its basic element is a matrix (array). It 
excels at numerical calculations and graphics.

– MatLab has tools (functions) to solve common problems 
plus toolboxes (collections of specialized programs) for 
specific types of problems.

– No prior experience in computer programming is 
needed to learn and use MatLab.  
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– Here we focus on the foundations of MatLab.  Once 
these foundations are well understood, students are able 
to continue to learn on their own with the many 
references available.

• Comment
– As you become more experienced in your study of 

engineering, it is most important to understand when to 
use a computational program, such as MatLab, and when 
to use a general-purpose, high-level programming 
language, such as C.

– In engineering, we write computer programs not only to 
help solve engineering and scientific problems, but also 
for real-time applications.  
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– Real-Time Applications
• Real-time software differs from conventional software 

in that its results must not only be numerically and 
logically correct, they must also be delivered at the 
correct time.

• Real-time software must embody the concept of 
duration, which is not part of conventional software.

• Real-time software used in most physical system control 
is also safety-critical.  Software malfunction can result 
in serious injury and/or significant property damage.

• Asynchronous operations, which while uncommon in 
conventional software, are the heart and soul of real-
time software.
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MatLab Desktop

Command WindowCurrent Directory / Workspace

Command History
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Command Window
Suggestion: Keep this as the only visible window
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• MatLab Windows
– Command Window

• Like a scratch pad; you can save the values you calculate, 
but not the commands used to generate those values.  M-
files (MatLab file that contains programming code) are used 
to save the command sequence.

• Several commands can be typed on the same line.  Separate 
commands by a comma.  Execution is from L to R.

• Use up arrow key to move through the list of commands 
you have executed.

– Command History Window
• Records the commands you issued in the command 

window.
• You can transfer any command from the command history 

window to the command window.
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– Workspace Window
• Keeps track of the variables you have defined as you 

execute commands in the command window.
• The command whos at the command prompt will 

show what variables have been defined.
– Current Directory Window

• MatLab uses the current directory to either access 
files or save information onto your computer.

– Document Window (open when needed)
• Double clicking on any variable listed in the 

workspace window automatically launches a 
document window containing the array editor.

– Graphics Window (open when needed)
• Automatically launches when you request a graph.
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– Edit Window (open when needed)
• The editing window is opened by choosing: File → 

New → m-file from the menu bar.
• This allows you to type and save a series of 

commands without executing them.
• You can also open the edit window by typing edit at 

the command prompt.
– Start Button

• Located in the lower left-hand corner of the MatLab 
window.

• Offers alternative access to MatLab toolboxes, 
various MatLab windows, help function, demos, and 
Internet products.
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• Two Useful Symbols:
– Semicolon ;

• If a semicolon is typed at the end of a command, the 
output of the command is not displayed.

– Percent Sign %
• When the % is typed in the beginning of a line, the line 

is designated as a comment.  Comments are frequently 
used in programs to add explanations or descriptions.
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Numerical Calculations
• Variables: we assign names to scalars, vectors, and matrices.  

Variable names start with a letter and are case sensitive.
• Scalars and Vectors are special cases of a Matrix.
• Matrix: set of numbers arranged in a rectangular grid of rows 

and columns.  Comas or blanks separate elements; semicolons 
separate rows.  A = [ 1, 2, 3; 4, 5, 6; 7, 8, 9]

• Scalar Operations
– a + b, a – b
– a * b, a / b, a \ b (Note: a \ b = b / a)
– a ^ b
– x = 8 or x = x + 1.  The = is the assignment operator.

1 2 3
A 4 5 6

7 8 9

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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• Precedence of Arithmetic Operations
– Parentheses, innermost first
– Exponentiation, left to right
– Multiplication and Division, left to right
– Addition and Subtraction, left to right

• Array Operations
– MatLab’s real strength is in matrix manipulations.
– Element-by-element operations: 

• Addition +
• Subtraction –
• Multiplication .*
• Division ./
• Exponentiation .^
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– Transposition: the transpose operator changes rows to 
columns and vice versa.  The operator is the 
apostrophe. 

• Number Display
– Scientific Notation: 6.022e23
– Display Format (e.g., long, short, scientific) – changing 

the display format does not change the accuracy of your 
results.

• Saving Work
– .MAT files
– .DAT files
– M-files: MatLab files that contain programming code.  

There are two types: scripts and functions.
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• Predefined MatLab Functions
– Arithmetic expressions often require computations 

other than addition, subtraction, multiplication, 
division, and exponentiation, e.g., many expressions 
require the use of logarithms, exponentials, and 
trigonometric functions.

– MatLab includes a built-in library of useful functions.
– For example:

• b = sqrt(x)
• a = rem(10,3)
• f = size(d)
• g = sqrt(sin(x))
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– MatLab includes extensive help tools, which are 
especially useful for interpreting function syntax.

– There are 3 ways to get help from within MatLab:
• Command-line help function – help
• Windowed help screen – Help → MatLab Help
• MatLab’s Internet help

– Elementary Math Functions - Examples
• abs(x)
• sqrt(x)
• round(x)
• sign(x)
• exp(x)
• log(x) and log10(x)   Important!!!
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– Trigonometric Functions
• Trigonometric functions assume that the angles are 

represented in radians.
• Examples:

– sin(x)
– cos(x)
– asin(x) 

– Data Analysis Functions
• MatLab contains a number of functions that make it easy 

to evaluate and analyze data.
• For Example:

– Maximum and Minimum, Mean and Median
– Sum and Products, Sorting Values
– Matrix Size, Variance and Standard Deviation
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• Script Files or M-Files
– Rather than entering commands in the non-interactive 

command window, where the commands cannot be saved and 
executed again, it is better to first create a file with a list of 
commands (a program), save it, and then run (execute) the 
file.

– The commands in the file are executed in the order listed.
– Commands in the file can be corrected or changed and the file 

can be saved and run again.
– Files used for this purpose are called script files or m-files 

(extension .m is used when the file is saved).
– To create a M-File: File → New → M-File
– The file must be saved before it can be executed.  To execute 

it, chose the Run icon, or type the file name in the Command 
Window and press Enter.
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• Useful Commands:
– To create a vector x with first term m, constant spacing q, 

and last term n, type x = [m:q:n]. If q is omitted, it is 
assumed to be 1.  For example:

• x = [1:2:13] results in the vector x = [1 3 5 7 9 11 13]
• x = [-3:2] results in the vector x = [-3 -2 -1 0 1 2]

– To create a vector x with constant spacing by specifying the 
first term xi and last term xf, and the number of terms n, 
type x = linspace (xi, xf, n).  For example:

• x = linspace (0, 8, 6) results in the vector
x = [0 1.6 3.2 4.8 6.4 8.0]
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– To generate the matrix

• Type A = [1 3 5 7; 3 7 -2 0; 5 2 -7 6]
– Note the following three commands:

• zeros (m, n) zeros (3, 4)

• ones (m, n) ones (3, 3)

• eye (n) eye (3)

1 3 5 7
A 3 7 2 0

5 2 7 6

⎡ ⎤
⎢ ⎥= −⎢ ⎥

−⎢ ⎥⎣ ⎦

0 0 0 0
A 0 0 0 0

0 0 0 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1 1 1
A 1 1 1

1 1 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1 0 0
A 0 1 0

0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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– Matrix A is given by:

• Its transpose (switches the rows to columns) is given by:

– Consider the vector x = [1 3 5 7 9 11 13]
• Typing x (4) displays the 4th element 7
• Typing x (4) = 12 redefines the 4th element in the 

vector, i.e., x = [1 3 5 12 9 11 13]

1 3 5 7
A 3 7 2 0

5 2 7 6

⎡ ⎤
⎢ ⎥= −⎢ ⎥

−⎢ ⎥⎣ ⎦

1 3 5
3 7 2

A '
5 2 7
7 0 6

⎡ ⎤
⎢ ⎥
⎢ ⎥=

− −⎢ ⎥
⎢ ⎥
⎣ ⎦
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– The address of an element in a matrix is its position (row 
number and column number).

• Typing A (2, 3) displays the matrix element -2
• Typing A (2, 3) = 12 changes the matrix element at 

location (2, 3) from -2 to 12.

1 3 5 7
A 3 7 2 0

5 2 7 6

⎡ ⎤
⎢ ⎥= −⎢ ⎥

−⎢ ⎥⎣ ⎦

1 3 5 7
A 3 7 12 0

5 2 7 6

⎡ ⎤
⎢ ⎥= ⎢ ⎥

−⎢ ⎥⎣ ⎦
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– Use of the colon :
• x (:) refers to all elements of the vector x
• x (m:n) refers to elements m through n of vector x
• A (:, n) refers to all the elements in all the rows of column 

n of matrix A
• A (n, :) refers to the elements in all the columns of row n

of matrix A
• A (:, m:n) refers to the elements in all the rows between 

columns m and n of the matrix A.
• A (m:n, :) refers to the elements in all the columns 

between rows m and n of the matrix A.
– The dimension of a vector or matrix can be changed by 

simply assigning values to the new elements.  MatLab will 
assign zeros to fill out the unspecified new vector or matrix 
elements.
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– An element, or range of elements, in a vector or matrix can 
be deleted by reassigning nothing to these elements.

• For the vector x = [1 3 5 7 9 11], the command x(3) = [] 
results in the vector x = [1 3 7 9 11]

• For the A matrix shown on the left, the command           
A (:, 2:3) = [] results in the A matrix on the right.

1 3 5 7
A 3 7 2 0

5 2 7 6

⎡ ⎤
⎢ ⎥= −⎢ ⎥

−⎢ ⎥⎣ ⎦

1 7
A 3 0

5 6

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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Basic Plotting and Graphics

• Two-Dimensional Plots
– Basic Plotting
– Types of Two-Dimensional Plots
– Subplots
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• Two-Dimensional Plots
– The most common plot use by engineers is the x-y plot.  

Generally, the x values represent the independent 
variable and the y values represent the dependent 
variable.  Both vectors must have the same number of 
elements.

– Basic Plotting
• Create x, y vectors; either y = f(x) or x, y 

experimental data.
• Plot (x, y)
• title (‘Sample Plot’)
• xlabel (‘x values’)
• ylabel (‘y values’)
• grid on
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– The figure command opens a new figure window.
– Creating Multiple Plots

• Plot (x, y1), hold on, plot (x, y2)
• Plot (x, y1, x, y2)
• Y = [y1 y2], plot (x, Y)

– Line, Color, and Mark Style Options (type help plot)
– Axes Scaling and Annotating Plots are options
– The fplot command plots a function of the form f = f(x) 

between specified limits, e.g.,

fplot (‘x^2 + 4*sin(2*x) – 1’, [-3 3])
will plot the function between the limits 

-3 and +3. 
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– Other Types of Two-Dimensional Plots
• Polar Plots: polar (x, y)
• Logarithmic Plots: semilogx (x, y), semilogy (x, y), 

loglog (x, y)
• Bar Graphs and Pie Charts
• Histograms

– Subplots
• The subplot command allows you to split the 

graphing window into subwindows.
• subplot (m, n, p) – window is split into a m-by-n 

grid of smaller windows, and the digit p specifies 
the pth window for the current plot.  Windows are 
numbered from left to right, top to bottom.
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Matrix Computations & Solving Equations

• Many engineering computations use a matrix, set 
of numbers arranged in a rectangular grid of rows 
and columns, as a convenient way to represent a 
set of data.  Here we are concerned with matrices 
that have more than one row and more than one 
column.

• Scalar multiplication and matrix addition and 
subtraction are preformed element by element.  
Here we will learn about matrix multiplication, as 
well as other operations and functions.
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• Transpose
– The transpose of a matrix A, designated AT, is a new 

matrix in which the rows of the original matrix are the 
columns of the new matrix.

• Dot Product
– The dot product is a scalar computed from two vectors 

of the same size.  The scalar is the sum of the products 
of the values in corresponding positions in the vectors.

– In MatLab, dot_product  = sum(A.*B); or dot(A,B);

x y z x y z

3

i i
i 1

ˆ ˆ ˆ ˆ ˆ ˆA B (A i A j A k) (B i B j B k)

A B
=

= + + + +

=∑

i i
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• Matrix Multiplication
– Matrix multiplication is not accomplished by multiplying 

corresponding elements of the matrices.  In matrix 
multiplication, the value in position c (i, j) of the product C 
of two matrices A and B is the dot product of the row i of 
the first matrix and column j of the second matrix.

– The first matrix A must have the same number of elements 
N in each row as there are in each column of the second 
matrix B.

– Also, in general, AB ≠ BA.
– In MatLab, the matrix multiplication of A and B is A*B;

N

ij ik kj
k 1

c a b
=

=∑
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• Matrix Powers
– If A is a matrix, the operation A.^2 squares each element in 

A.  To square the matrix, i.e., compute A*A, A must be a 
square matrix and we use the operation A^2.  

• Matrix Inverse
– By definition, the inverse of a square matrix A is the matrix 

A-1 such that the matrix products AA-1 and A-1A are both 
equal to the identity matrix I.  In MatLab, we execute inv(A)
to find the inverse of A.

• Determinant
– A determinant is a scalar computed from the entries in a 

square matrix.  Determinants have various applications in 
engineering, including solving systems of  simultaneous 
equations.  In MatLab, execute det(A) to find the determinant 
of A.
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• Solutions to Systems of Linear Equations
– Consider the following system of three equations with 

three unknowns:

– We can rewrite the system of equations using the 
following matrices:

3x 2y 1z 10
1x 3y 2z 5
1x 1y 1z 1

+ − =
− + + =

− − = −

3 2 1 x 10
A 1 3 2 X y B 5 AX B

1 1 1 z 1

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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– To solve this system of equations, we write:

– In MatLab, we write: X = inv(A)*B;
– A better way to solve a system of linear equations is to 

use the matrix division operator: X = A\B; this method 
is more efficient than using the matrix inverse and 
produces a greater numerical accuracy.

1 1

1 1

1

AX B
A AX A B
IX A B since A A I
X A B since IX X

− −

− −

−

=

=

= =

= =
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• Special Matrices
– Matrix of Zeros, e.g., A = zeros (3)
– Matrix of Ones, e.g., A = ones (3)
– Identity Matrix, e.g., A = eye (3)
– Diagonal Matrices, e.g., A = [1 2 3; 4 5 6; 7 8 9]; B = 

diag (A);
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