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Course Mid-Semester Case Study

 This Integrating experience is to take an existing
physical system (electrical first-order system here,
but it could be any physical system) and have it
meet desired dynamic performance specifications.

t,  <0.015sec din lout
10%—-90% .
M, <25% R, Electrical
G )
L, < 0.09 sec €in Rz — Cout PhYSICCll
Control Effort <13V SYST em
SS Error=0 -

Electromechanical Engineering Systems K.Craig 2




Process

— Can the system alone (i.e., open loop) meet the
performance specifications, I.e., unit step
response with desired rise time, overshoot, and

settling time?

« Make simplifying assumptions (e.g.,

lin lout

— — pure and ideal resistors and
R, capacitor, no loading) and create the
- s g physical model.
* Apply KVL and KCL, along with
— component constitutive equations, to
= obtain the mathematical model.
R1=100 KQ
R2 =100 KQ R,
C=1.F € _ R,+R, _ K _ 0.5
Physical System © RRirRé cp+1 HPFL 005D+
172 1st-Order
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— Analysis (use hand calculation or MatLab analysis) shows that
the system time constant is too large and operating open-loop
cannot meet the performance specifications. What to do?

— Change the physical system! Here we assume that the physical
system cannot be changed.

— Apply closed-loop (feedback) control to obtain the desired
response and use the Pl (proportional-integral) controller.

Pl Controller 1%-Order Process

callinail 90% of the

Ke+ 5 D+ T~ controllers used
P .
In the world are
Pl Controllers!
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— Comparison of the actual transfer function with the
standard-form transfer function gives the following
relationships:

K KK. ‘ 1+ KK
K, ! T, - 2./t KK

— We now have relationships between the control gains,
K, and K;, and the dynamic performance indictors for a
pure second-order dynamic system, o, and .

2
_ Ty _1 ~
Kj==2"  Kp= K[ZC,/’CpKiK 1]
1.8 = 4.6
r ~=2 M, =e 1-¢* e
10%-90% O)n 1% C(X)n
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— But Wait! This is not a pure 2"9-order dynamic system.
There are numerator dynamics — the numerator has a 15-order
term! Not to worry — why?

— We know that for a pure 2"-order dynamic system, with the
damping ratio { between 0 and 1 (typical of most operating
engineering systems), the roots of the differential-equation
characteristic equation are complex conjugates (indicated by

an Xx). |
Imaginery4
The numerator dynamics, I.e., +
the 15t-order term, has a root -1/t TS /9‘ £=smnb
called a zero, indicated with a o. T il BN s
As the zero moves along the real = b
. . numerator
axis closer to the pole locations, zero
system dynamic behavior is complex-
. conjugate

affected as shown. Take this poles

effect into account in the design!
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— Choose o, =118 and {=0.64 — K;=1392and K;=13.1
— The predicted performance values for a pure 2"-order

system are:
7l
1.8 2 4.6
t,  ~=2-0015 M =e" =073 t_~——=06l
10%-90% (l)n 1% C(l)n
Note the effect of the zero: V?PE?T
Ll Mp T, and t, 1 " va ==
/ Without Zero
pole locations: -75.5+90.7i § | /
zero location: -106.3 T
System Performance
t.=.0086 M,=.185 t;=.063 |

Time (sec)
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— Qur design meets the performance specifications. But

what about the control effort? We are going to first

Implement our design with analog op-amps and we
know that the maximum output of an op-amp is about
13 volts when powered by + 15 V. We use Simulink to

check the control effort.

—_> E

> M
To Workspace?2
To Workspacel
> 13.1s+1392 0.5
> > > C
Unit Step - > 0.05s+1
P1 Control Plant

Transfer Function

Transfer Function

Pl Control of a First-Order Plant
MatLab Simulink Block Diagram
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M vs. time
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Bode Diagram
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Analytical Closed-Loop Bode Plot
Note: Frequency Response will be studied and used
more extensively in the 2" half of the course.
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PT Analog Control of a 15*-Order Plant
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Measurement: Closed-Loop Step-Response Plot — NI MyDAQO

{3 Oscilloscope - NI ELVISmx = B |-

|| Basic Settings

Sample Rate: 5.00 kS/s

Source Source
AlD E| Al E|
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- O - 1 - O -
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J v J J
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Measurement: Closed-Loop Bode Plot — NI MyDAOQO

Frequency (Hz) 1000.00

Phase (deg) -86.94 Gain 0.02

Gain (dB) -32.19
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