
Introduction to MatLab K. Craig 1

Introduction to MatLab

Introduction to MatLab K. Craig 2

MatLab Introduction

• MatLab and the MatLab Environment
• Numerical Calculations
• Basic Plotting and Graphics
• Matrix Computations and Solving Equations

Introduction to MatLab K. Craig 3

MatLab Environment
• MatLab

– Matrix Laboratory
– MatLab is an interactive system and programming

language for general scientific and engineering
computation. Its basic element is a matrix (array). It
excels at numerical calculations and graphics.

– MatLab has tools (functions) to solve common problems
plus toolboxes (collections of specialized programs) for
specific types of problems.

– No prior experience in computer programming is
needed to learn and use MatLab.

Introduction to MatLab K. Craig 4

– Here we focus on the foundations of MatLab. Once
these foundations are well understood, students are able
to continue to learn on their own with the many
references available.

• Comment
– As you become more experienced in your study of

engineering, it is most important to understand when to
use a computational program, such as MatLab, and when
to use a general-purpose, high-level programming
language, such as C.

– In engineering, we write computer programs not only to
help solve engineering and scientific problems, but also
for real-time applications.

Introduction to MatLab K. Craig 5

– Real-Time Applications
• Real-time software differs from conventional software

in that its results must not only be numerically and
logically correct, they must also be delivered at the
correct time.

• Real-time software must embody the concept of
duration, which is not part of conventional software.

• Real-time software used in most physical system control
is also safety-critical. Software malfunction can result
in serious injury and/or significant property damage.

• Asynchronous operations, which while uncommon in
conventional software, are the heart and soul of real-
time software.

Introduction to MatLab K. Craig 6

MatLab Desktop

Command WindowCurrent Directory / Workspace

Command History

Introduction to MatLab K. Craig 7

Command Window
Suggestion: Keep this as the only visible window

Introduction to MatLab K. Craig 8

• MatLab Windows
– Command Window

• Like a scratch pad; you can save the values you calculate,
but not the commands used to generate those values. M-
files (MatLab file that contains programming code) are used
to save the command sequence.

• Several commands can be typed on the same line. Separate
commands by a comma. Execution is from L to R.

• Use up arrow key to move through the list of commands
you have executed.

– Command History Window
• Records the commands you issued in the command

window.
• You can transfer any command from the command history

window to the command window.

Introduction to MatLab K. Craig 9

– Workspace Window
• Keeps track of the variables you have defined as you

execute commands in the command window.
• The command whos at the command prompt will

show what variables have been defined.
– Current Directory Window

• MatLab uses the current directory to either access
files or save information onto your computer.

– Document Window (open when needed)
• Double clicking on any variable listed in the

workspace window automatically launches a
document window containing the array editor.

– Graphics Window (open when needed)
• Automatically launches when you request a graph.

Introduction to MatLab K. Craig 10

– Edit Window (open when needed)
• The editing window is opened by choosing: File →

New → m-file from the menu bar.
• This allows you to type and save a series of

commands without executing them.
• You can also open the edit window by typing edit at

the command prompt.
– Start Button

• Located in the lower left-hand corner of the MatLab
window.

• Offers alternative access to MatLab toolboxes,
various MatLab windows, help function, demos, and
Internet products.

Introduction to MatLab K. Craig 11

• Two Useful Symbols:
– Semicolon ;

• If a semicolon is typed at the end of a command, the
output of the command is not displayed.

– Percent Sign %
• When the % is typed in the beginning of a line, the line

is designated as a comment. Comments are frequently
used in programs to add explanations or descriptions.

Introduction to MatLab K. Craig 12

Numerical Calculations
• Variables: we assign names to scalars, vectors, and matrices.

Variable names start with a letter and are case sensitive.
• Scalars and Vectors are special cases of a Matrix.
• Matrix: set of numbers arranged in a rectangular grid of rows

and columns. Comas or blanks separate elements; semicolons
separate rows. A = [1, 2, 3; 4, 5, 6; 7, 8, 9]

• Scalar Operations
– a + b, a – b
– a * b, a / b, a \ b (Note: a \ b = b / a)
– a ^ b
– x = 8 or x = x + 1. The = is the assignment operator.

1 2 3
A 4 5 6

7 8 9

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Introduction to MatLab K. Craig 13

• Precedence of Arithmetic Operations
– Parentheses, innermost first
– Exponentiation, left to right
– Multiplication and Division, left to right
– Addition and Subtraction, left to right

• Array Operations
– MatLab’s real strength is in matrix manipulations.
– Element-by-element operations:

• Addition +
• Subtraction –
• Multiplication .*
• Division ./
• Exponentiation .^

Introduction to MatLab K. Craig 14

– Transposition: the transpose operator changes rows to
columns and vice versa. The operator is the
apostrophe.

• Number Display
– Scientific Notation: 6.022e23
– Display Format (e.g., long, short, scientific) – changing

the display format does not change the accuracy of your
results.

• Saving Work
– .MAT files
– .DAT files
– M-files: MatLab files that contain programming code.

There are two types: scripts and functions.

Introduction to MatLab K. Craig 15

• Predefined MatLab Functions
– Arithmetic expressions often require computations

other than addition, subtraction, multiplication,
division, and exponentiation, e.g., many expressions
require the use of logarithms, exponentials, and
trigonometric functions.

– MatLab includes a built-in library of useful functions.
– For example:

• b = sqrt(x)
• a = rem(10,3)
• f = size(d)
• g = sqrt(sin(x))

Introduction to MatLab K. Craig 16

– MatLab includes extensive help tools, which are
especially useful for interpreting function syntax.

– There are 3 ways to get help from within MatLab:
• Command-line help function – help
• Windowed help screen – Help → MatLab Help
• MatLab’s Internet help

– Elementary Math Functions - Examples
• abs(x)
• sqrt(x)
• round(x)
• sign(x)
• exp(x)
• log(x) and log10(x) Important!!!

Introduction to MatLab K. Craig 17

– Trigonometric Functions
• Trigonometric functions assume that the angles are

represented in radians.
• Examples:

– sin(x)
– cos(x)
– asin(x)

– Data Analysis Functions
• MatLab contains a number of functions that make it easy

to evaluate and analyze data.
• For Example:

– Maximum and Minimum, Mean and Median
– Sum and Products, Sorting Values
– Matrix Size, Variance and Standard Deviation

Introduction to MatLab K. Craig 18

• Script Files or M-Files
– Rather than entering commands in the non-interactive

command window, where the commands cannot be saved and
executed again, it is better to first create a file with a list of
commands (a program), save it, and then run (execute) the
file.

– The commands in the file are executed in the order listed.
– Commands in the file can be corrected or changed and the file

can be saved and run again.
– Files used for this purpose are called script files or m-files

(extension .m is used when the file is saved).
– To create a M-File: File → New → M-File
– The file must be saved before it can be executed. To execute

it, chose the Run icon, or type the file name in the Command
Window and press Enter.

Introduction to MatLab K. Craig 19

• Useful Commands:
– To create a vector x with first term m, constant spacing q,

and last term n, type x = [m:q:n]. If q is omitted, it is
assumed to be 1. For example:

• x = [1:2:13] results in the vector x = [1 3 5 7 9 11 13]
• x = [-3:2] results in the vector x = [-3 -2 -1 0 1 2]

– To create a vector x with constant spacing by specifying the
first term xi and last term xf, and the number of terms n,
type x = linspace (xi, xf, n). For example:

• x = linspace (0, 8, 6) results in the vector
x = [0 1.6 3.2 4.8 6.4 8.0]

Introduction to MatLab K. Craig 20

– To generate the matrix

• Type A = [1 3 5 7; 3 7 -2 0; 5 2 -7 6]
– Note the following three commands:

• zeros (m, n) zeros (3, 4)

• ones (m, n) ones (3, 3)

• eye (n) eye (3)

1 3 5 7
A 3 7 2 0

5 2 7 6

⎡ ⎤
⎢ ⎥= −⎢ ⎥

−⎢ ⎥⎣ ⎦

0 0 0 0
A 0 0 0 0

0 0 0 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1 1 1
A 1 1 1

1 1 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1 0 0
A 0 1 0

0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Introduction to MatLab K. Craig 21

– Matrix A is given by:

• Its transpose (switches the rows to columns) is given by:

– Consider the vector x = [1 3 5 7 9 11 13]
• Typing x (4) displays the 4th element 7
• Typing x (4) = 12 redefines the 4th element in the

vector, i.e., x = [1 3 5 12 9 11 13]

1 3 5 7
A 3 7 2 0

5 2 7 6

⎡ ⎤
⎢ ⎥= −⎢ ⎥

−⎢ ⎥⎣ ⎦

1 3 5
3 7 2

A '
5 2 7
7 0 6

⎡ ⎤
⎢ ⎥
⎢ ⎥=

− −⎢ ⎥
⎢ ⎥
⎣ ⎦

Introduction to MatLab K. Craig 22

– The address of an element in a matrix is its position (row
number and column number).

• Typing A (2, 3) displays the matrix element -2
• Typing A (2, 3) = 12 changes the matrix element at

location (2, 3) from -2 to 12.

1 3 5 7
A 3 7 2 0

5 2 7 6

⎡ ⎤
⎢ ⎥= −⎢ ⎥

−⎢ ⎥⎣ ⎦

1 3 5 7
A 3 7 12 0

5 2 7 6

⎡ ⎤
⎢ ⎥= ⎢ ⎥

−⎢ ⎥⎣ ⎦

Introduction to MatLab K. Craig 23

– Use of the colon :
• x (:) refers to all elements of the vector x
• x (m:n) refers to elements m through n of vector x
• A (:, n) refers to all the elements in all the rows of column

n of matrix A
• A (n, :) refers to the elements in all the columns of row n

of matrix A
• A (:, m:n) refers to the elements in all the rows between

columns m and n of the matrix A.
• A (m:n, :) refers to the elements in all the columns

between rows m and n of the matrix A.
– The dimension of a vector or matrix can be changed by

simply assigning values to the new elements. MatLab will
assign zeros to fill out the unspecified new vector or matrix
elements.

Introduction to MatLab K. Craig 24

– An element, or range of elements, in a vector or matrix can
be deleted by reassigning nothing to these elements.

• For the vector x = [1 3 5 7 9 11], the command x(3) = []
results in the vector x = [1 3 7 9 11]

• For the A matrix shown on the left, the command
A (:, 2:3) = [] results in the A matrix on the right.

1 3 5 7
A 3 7 2 0

5 2 7 6

⎡ ⎤
⎢ ⎥= −⎢ ⎥

−⎢ ⎥⎣ ⎦

1 7
A 3 0

5 6

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Introduction to MatLab K. Craig 25

Basic Plotting and Graphics

• Two-Dimensional Plots
– Basic Plotting
– Types of Two-Dimensional Plots
– Subplots

Introduction to MatLab K. Craig 26

• Two-Dimensional Plots
– The most common plot use by engineers is the x-y plot.

Generally, the x values represent the independent
variable and the y values represent the dependent
variable. Both vectors must have the same number of
elements.

– Basic Plotting
• Create x, y vectors; either y = f(x) or x, y

experimental data.
• Plot (x, y)
• title (‘Sample Plot’)
• xlabel (‘x values’)
• ylabel (‘y values’)
• grid on

Introduction to MatLab K. Craig 27

– The figure command opens a new figure window.
– Creating Multiple Plots

• Plot (x, y1), hold on, plot (x, y2)
• Plot (x, y1, x, y2)
• Y = [y1 y2], plot (x, Y)

– Line, Color, and Mark Style Options (type help plot)
– Axes Scaling and Annotating Plots are options
– The fplot command plots a function of the form f = f(x)

between specified limits, e.g.,

fplot (‘x^2 + 4*sin(2*x) – 1’, [-3 3])
will plot the function between the limits

-3 and +3.

Introduction to MatLab K. Craig 28

– Other Types of Two-Dimensional Plots
• Polar Plots: polar (x, y)
• Logarithmic Plots: semilogx (x, y), semilogy (x, y),

loglog (x, y)
• Bar Graphs and Pie Charts
• Histograms

– Subplots
• The subplot command allows you to split the

graphing window into subwindows.
• subplot (m, n, p) – window is split into a m-by-n

grid of smaller windows, and the digit p specifies
the pth window for the current plot. Windows are
numbered from left to right, top to bottom.

Introduction to MatLab K. Craig 29

Matrix Computations & Solving Equations

• Many engineering computations use a matrix, set
of numbers arranged in a rectangular grid of rows
and columns, as a convenient way to represent a
set of data. Here we are concerned with matrices
that have more than one row and more than one
column.

• Scalar multiplication and matrix addition and
subtraction are preformed element by element.
Here we will learn about matrix multiplication, as
well as other operations and functions.

Introduction to MatLab K. Craig 30

• Transpose
– The transpose of a matrix A, designated AT, is a new

matrix in which the rows of the original matrix are the
columns of the new matrix.

• Dot Product
– The dot product is a scalar computed from two vectors

of the same size. The scalar is the sum of the products
of the values in corresponding positions in the vectors.

– In MatLab, dot_product = sum(A.*B); or dot(A,B);

x y z x y z

3

i i
i 1

ˆ ˆ ˆ ˆ ˆ ˆA B (A i A j A k) (B i B j B k)

A B
=

= + + + +

=∑

i i

Introduction to MatLab K. Craig 31

• Matrix Multiplication
– Matrix multiplication is not accomplished by multiplying

corresponding elements of the matrices. In matrix
multiplication, the value in position c (i, j) of the product C
of two matrices A and B is the dot product of the row i of
the first matrix and column j of the second matrix.

– The first matrix A must have the same number of elements
N in each row as there are in each column of the second
matrix B.

– Also, in general, AB ≠ BA.
– In MatLab, the matrix multiplication of A and B is A*B;

N

ij ik kj
k 1

c a b
=

=∑

Introduction to MatLab K. Craig 32

• Matrix Powers
– If A is a matrix, the operation A.^2 squares each element in

A. To square the matrix, i.e., compute A*A, A must be a
square matrix and we use the operation A^2.

• Matrix Inverse
– By definition, the inverse of a square matrix A is the matrix

A-1 such that the matrix products AA-1 and A-1A are both
equal to the identity matrix I. In MatLab, we execute inv(A)
to find the inverse of A.

• Determinant
– A determinant is a scalar computed from the entries in a

square matrix. Determinants have various applications in
engineering, including solving systems of simultaneous
equations. In MatLab, execute det(A) to find the determinant
of A.

Introduction to MatLab K. Craig 33

• Solutions to Systems of Linear Equations
– Consider the following system of three equations with

three unknowns:

– We can rewrite the system of equations using the
following matrices:

3x 2y 1z 10
1x 3y 2z 5
1x 1y 1z 1

+ − =
− + + =

− − = −

3 2 1 x 10
A 1 3 2 X y B 5 AX B

1 1 1 z 1

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Introduction to MatLab K. Craig 34

– To solve this system of equations, we write:

– In MatLab, we write: X = inv(A)*B;
– A better way to solve a system of linear equations is to

use the matrix division operator: X = A\B; this method
is more efficient than using the matrix inverse and
produces a greater numerical accuracy.

1 1

1 1

1

AX B
A AX A B
IX A B since A A I
X A B since IX X

− −

− −

−

=

=

= =

= =

Introduction to MatLab K. Craig 35

• Special Matrices
– Matrix of Zeros, e.g., A = zeros (3)
– Matrix of Ones, e.g., A = ones (3)
– Identity Matrix, e.g., A = eye (3)
– Diagonal Matrices, e.g., A = [1 2 3; 4 5 6; 7 8 9]; B =

diag (A);

	Introduction to MatLab
	MatLab Introduction
	MatLab Environment
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Numerical Calculations
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Basic Plotting and Graphics
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Matrix Computations & Solving Equations
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35

