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Electrical Systems:
Modeling, Analysis, Measurement, & Control
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Electrical System Topics
• Part 3

– Inductor
• Physical Model
• Mathematical Model
• Step Response and Frequency Response
• Important Uses

– Electrical Impedance
– LR and LRC Circuit System Investigations
– LC Circuit Resonance; Spring / Mass Analogy
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Inductors
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The Inductance Element

• This is another fundamental electrical element.  Like a 
resistor and capacitor, it is intentionally or unintentionally 
present in every real electrical system.

• An electric current always creates an associated magnetic 
field (Ampere’s Law).  If a coil or other circuit lies within 
this field, and if the field changes with time, an 
electromotive force (voltage) is induced in the circuit. 
(Faraday’s Law of Induction)
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– The magnitude of the induced voltage is proportional to the 
rate of change of flux dφ/dt linking the circuit, and its 
polarity is such as to oppose the cause producing it. (Lenz’s 
Law)

– If no ferromagnetic materials (e.g., iron) are present, the rate 
of change of flux is proportional to the rate of change of 
current which is producing the magnetic field.

– The proportionality factor relating the induced emf (voltage) 
to the rate of change of current is called the inductance L.

– The presence of ferromagnetic materials greatly increases the 
strength of the effects, but also makes them significantly 
nonlinear, since now the flux produced by the current is not 
proportional to the current.
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– Thus, iron can be used to get a large value of 
inductance, but the value will be different for different 
current levels.

– The pure inductance element has induced voltage e
instantaneously related to di/dt, but the relation can be 
nonlinear.

– The pure and ideal element has e directly proportional 
to di/dt (e = L di/dt), i.e., it is linear and free from 
resistance and capacitance.

( )

die L
dt
e voltsL henry H
di amps
dt sec

=

= = =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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– A real inductor always has considerable resistance.  At 
DC and low frequencies, all real inductors behave like 
resistors, not inductors.

– At high frequencies, all real devices (R, C, L) exhibit 
complex behavior involving some combination of all 
three pure elements. 

– Thus, real inductors deviate from the pure/ideal model 
at both low and high frequencies, whereas R and C 
deviate mainly at high frequencies.

– One can expect real inductors to nearly follow the pure 
model only for some intermediate range of frequencies 
and, if the inductance value is small enough to be 
achieved without the use of magnetic material, the 
behavior may also approximate the ideal (linear).
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• Self-Inductance and Mutual-Inductance
– Self-inductance is a property of a single coil, due to the 

fact that the magnetic field set up by the coil current 
links the coil itself.  

– Mutual inductance causes a changing current in one 
circuit to induce a voltage in another circuit.

– Mutual inductance is symmetrical, i.e., a current 
changing with a certain di/dt in coil 1 induces the same 
voltage in coil 2 as would be induced in coil 1 by the 
same di/dt current change in coil 2.  This holds for coils 
in the same circuit or in separate circuits.

– The induced voltage in circuit A due to current change 
in B can either add or subtract from the self-induced 
voltage  in A.  This depends on actual geometry. 
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• Energy Stored
– The pure and ideal inductance stores energy in its 

magnetic field.  The energy stored, irrespective of how 
the current i is achieved, is:

– If we connect a current-carrying inductor to an energy-
using device (e.g., resistor) the inductor will supply 
energy in an amount ½ Li2 as its current decays from i
to 0.  During this decay process, i if originally positive 
stays positive, but di/dt (and thus e) becomes negative, 
making power negative.

( )
t i 2

0 0

diPower ei L i
dt

di i LEnergy iL dt Li di
dt 2

= =

= = =∫ ∫
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– At very low frequencies, a small voltage amplitude can 
produce a very large current and thus an inductance is said to 
approach a short circuit in this case.

– At high frequencies, the current produced by any finite 
voltage approaches zero, and thus an inductance is said to 
approach an open circuit at high frequencies.

– For a capacitance, the reverse frequency behavior is 
observed: the capacitance approaches a short circuit at high 
frequencies and an open circuit at low frequencies.

– One can often use these simple rules to quickly estimate the 
behavior of complex circuits at low and high frequency.  Just 
replace L’s and C’s by open and short circuits, depending on 
which frequency you are interested in. 

– Remember for real circuits that real L’s always become R’s 
for low frequency.
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Will carry any current the 
source can produce until 

the wire burns up.

Short Circuit

Open Circuit
Will carry no current no 

matter how large the 
voltage is, unless arcing 

occurs.

Capacitor
at high frequency.

Inductor
at low frequency.

Capacitor
at low frequency.

Inductor
at high frequency.

Resistors behave the same at all frequencies. 
Capacitors do not.  Inductors do not.
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Inductance Element

( )

( ) ( )

die L LDi
dt

i 1D
e LD
i 1 1i i
e i L L

1 90
L

°

= =

=

ω = = −
ω ω

= ∠−
ω
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The Three Basic Element Input-Output Relationships

Resistor

Capacitor

Inductor
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Step Response Inductor die L LDi
dt

e LDi

= =

=

qin =  i
qout = e
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• Step Response and Impulse Response
– By a step input of any variable we mean a situation where 

the system is “at rest” at time t = 0 and we instantly change 
the input quantity, from wherever it was just before t = 0, 
by a given amount, either positive or negative, and then 
keep the input constant at this new value “forever.”

– The integral of a step input is a ramp and the derivative of a 
step input is an impulse.
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The impulse function is explained by the 
figure, where we approximate the step function 
by a terminated ramp and then let the rise time 
of the ramp approach zero.  As we let the ramp 
get steeper and steeper, the magnitude of de/dt
approaches infinity, and its duration approaches 
zero, but the area under it will always be es. If 
es = 1 (a unit step function), its derivative is 
called the unit impulse function with an area or 
strength equal to one unit.  The step function is 
the integral of the impulse function, or 
conversely, the impulse function is the 
derivative of the step function.  When we 
multiply the impulse function by some number, 
we increase the “strength of the impulse”, but 
“strength” now means area, not height as it 
does for “ordinary” functions.  
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– An impulse that has an infinite magnitude and zero 
duration is mathematical fiction and does not occur in 
physical systems.  If, however, the magnitude of a pulse 
input to a system is very large and its duration is very short 
compared to the system’s speed of response, then we can 
approximate the pulse input by an impulse function.  The 
impulse input supplies energy to the system in an 
infinitesimal time.

– The step response of a component or system is the time 
response to a step input of some magnitude.  The impulse 
response of a system is the derivative of the step response 
and is the time response to an impulse input of some 
strength. 
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Frequency Response (Steady-State)

Inductor

die L LDi
dt

e LDi

= =

= qin =  i
qout = e



Electrical Systems K. Craig     21

• Use of Inductors
– The use of inductors is rapidly disappearing from 

electronics.
– There are two main types of inductors: large, massive 

inductors to be used in power supplies and small inductors 
used in low-power, frequency-discriminating circuitry.

– For the large inductors, the main parameters are: 
inductance (usually a few mH to 50 H), the nominal 
resistance of the winding, the maximum current (a few mA 
to several A, set by heating limits), the size (often large), 
and the cost.
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– The small inductors often look like low-powered resistors, with 
inductances in the 0.1 μH to 100 mH range, and have color-
code bands to indicate the value of the inductance.  The low-
value inductors are air-core coils, whereas the larger-value 
inductors are made with ferrite cores. 

– Other small inductors in the 10 to 1000 μH range look like 
small tire-shaped windings typically of the order of an inch or 
less in diameter usually mounted on some sort of a cylindrical 
core.  These coils can come shielded for situations where noise 
radiation or noise pickup may be a problem.

– For small inductors the interesting facts are the inductance 
(usually in μH), the resistance of the coil, the current-carrying 
limits (usually in the mA range), the energy loss as a function 
of frequency, some indication of the maximum (or minimum) 
frequency at which the coil is intended to be used, the size, and 
a short description of the type of coil.
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Electrical Impedance

• A variable that flows through an element is impeded by the 
element.

• Electrical impedance is a generalization of the simple 
voltage/current relation called resistance for resistors.

• It can be applied to capacitors, inductors, and to entire 
circuits.

• It assumes ideal (linear) behavior of the device.
• Electrical impedance is defined as the transfer function 

relating voltage and current:

( ) ( )eZ D D
i

=

Note: Z is a function of the differential operator D, as is e/i.
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– The impedances for the pure/ideal electrical elements are:

– Impedance is most useful in characterizing the dynamic 
behavior of components and systems.

( )

( )

( )

R

C

L

Z D R
1Z D

CD
Z D LD

=

=

=
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• The impedances for the pure/ideal electrical elements are:

• The impedances for the pure/ideal mechanical elements are:

( ) ( )

( ) ( )

( ) ( )

R R

C C

L L

Z D R     Z i R
1 1Z D      Z i

CD i C
Z D LD     Z i i L

= ω =

= ω =
ω

= ω = ω

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

B B

S S
S S

M M

fZ D D B     Z i B
v
f 1 1Z D D     Z i
v C D i C
fZ D D MD     Z i i M
v

= = ω =

= = ω =
ω

= = ω = ω
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Impedances
of

Mechanical & Electrical
Elements

force    voltage
velocity    current
damper    resistor
spring    capacitor

mass    inductor

⇔
⇔
⇔
⇔
⇔
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• It is also useful in the solution of routine circuit problems.

• If ZX is a positive number, the reactive impedance is “behaving 
like an inductor” and is called inductive reactance; if negative, it 
is called capacitive reactance.

e
R X

i

R

X

AZ M M cos iMsin Z iZ
A

R Z resistive impedance
X = Z  reactive impedance

= ∠φ = ∠φ = φ+ φ = +

= =
=



Electrical Systems K. Craig     28

• Given R and X, one can always compute the magnitude 
and phase angle of the impedance:

• Since the sinusoidal impedance gives the amplitude ratio 
and phase angle of voltage with respect to current, if the 
impedance of any circuit (no matter how complex) is 
known (from either theory or measurement), and either 
voltage or current is given, we can quickly calculate the 
other.

2 2 1 XM R X           tan
R

− ⎛ ⎞= + φ = ⎜ ⎟
⎝ ⎠
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• The rules for combining series or parallel impedances are 
extensions to the dynamic case of the rules governing 
series and parallel static resistance elements.
– If the same flow passes through two or more 

impedances, those impedances are said to be in series, 
and they are equivalent to a single impedance whose 
impedance is the sum of the individual impedances.

– If the same effort difference exists across two or more 
impedances, those impedances are said to be in parallel 
and they are equivalent to a single impedance whose 
reciprocal is equal to the sum of the reciprocals of the 
individual impedances.
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C

q

e φ

L

i

R

∫

∫

General Model Structure for Electrical Systems

( )e dtφ = ∫

( )q i dt= ∫

Liφ =
qe
C

= e iR=
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Physical System for Investigation

LR Circuit
Electrical System
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Physical Modeling

• Simplifying Assumptions
– Resistor is pure and ideal; Inductor is ideal but has 

resistance.
– Voltage source is ideal and supplies the intended voltage to 

the circuit no matter how much current (and thus power) 
this might require.

– Measuring device is ideal and does not load the circuit by 
drawing any current.

Rein eout

iL

iout = 0
L

iR
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Model Parameter Identification

• Measure component values using the DMM. 

• LR Circuit
– R = 56 Ω
– L = 0.955 mH nominal, RL =  3 Ω



Electrical Systems K. Craig     34

Mathematical Modeling of System

Basic Component
Equations

(Constitutive Equations)

L
in out

out R

die e L
dt

e i R

− =

=

KVL L
in out

L R out R

die L e 0
dt

i i i i 0

− − =

= + = +

( )

out
out in

out out in

out in

out

in

deL e e
R dt
L De e e
R

L D 1 e e
R

e 1 K
Le D 1D 1
R

+ =

+ =

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

= =
τ ++

K 1
L
R

=

τ =

in out

L

out

R

KCL

out
in out

ede L e 0
dt R
⎛ ⎞− − =⎜ ⎟
⎝ ⎠
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( )

out

in

out in

out out in

out
out in

e R 1
Le LD R D 1
R

L D 1 e 1 e
R
L D e e e
R
deL e e

R dt

= =
+ +

⎛ ⎞+ =⎜ ⎟
⎝ ⎠
⎛ ⎞ + =⎜ ⎟
⎝ ⎠

+ =

Another Approach:  Impedance + Voltage Divider

Impedance:

ee iR R
i

di ee L LDi LD
dt i

= =

= = =

out

in

LD
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Mathematical Analysis and Prediction

R = 59 Ω
L =  0.955 mH

0.63

L 0.0162 msec
R

τ = =

LR Circuit Unit Step Response

out

in

e 1 K
Le D 1D 1
R

K 1 Steady-State Gain
L Time Constant
R

= =
τ ++

= =

τ = =
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• Time Constant τ
– Time it takes the step response to reach 63% of the steady-

state value, Kein.

• Rise Time Tr = 2.2 τ
– Time it takes the step response to go from 10% to 90% of 

the steady-state value, Kein.

• Delay Time Td = 0.69 τ
– Time it takes the step response to reach 50% of the steady-

state value, Kein.

• Steady-State Value
– The steady-state value of the response is Kein and at 4τ

seconds (4 time constants), the response has reached 98% 
of the steady-state value; for all practical purposes, this is 
steady state.
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LR Circuit
Frequency Response

1 R rad61780
L sec
9832 Hz Bandwidth

= =
τ
= =

-3 dB

Slope = -20 dB/decade

DC Value = K
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Amplitude Ratio = 0.707 = -3 dB Phase Angle = -45°

Input
9832 Hz

Sine Wave

Output
R = 59 Ω

L = 0.955 mH

LR Circuit



Electrical Systems K. Craig     40

• Bandwidth
– The bandwidth is the frequency where the amplitude ratio 

drops by a factor of 0.707 = -3dB of its gain at zero or low-
frequency.

– For a 1st-order system, the bandwidth is equal to 1/ τ.
– The larger (smaller) the bandwidth, the faster (slower) the 

step response.
– Bandwidth is a direct measure of system susceptibility to 

noise, as well as an indicator of the system speed of 
response.

• Note that the amplitude ratio follows low- and high-frequency 
asymptotes, i.e., slope 0 and –20 dB/decade, respectively, and 
the phase angle approaches -90° asymptotically.  At the break 
frequency 1/τ, the phase angle is -45°.
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Measurements Using LabVIEW

• LR Circuit
– Step Response
– Frequency Response
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Function Generator

Power Ground

Oscilloscope

Oscilloscope
Ground

Buffer Op-Amp
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Physical System for Investigation

LRC Circuit
Electrical System
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Physical Modeling

• Simplifying Assumptions
– Resistor and Capacitor are pure and ideal; Inductor is ideal 

but has resistance
– Voltage source is ideal and supplies the intended voltage to 

the circuit no matter how much current (and thus power) 
this might require

– Measuring device is ideal and does not load the circuit by 
drawing any current

outin

R
out

L

C
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Model Parameter Identification

• Measure component values using the DMM. 

• LRC Circuit
– R = Potentiometer (500 Ω)
– L = 22 mH (nominal)
– C = 0.1 μF (nominal)
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in out

out out
in out

2
out out

out in2

die Ri L e 0
dt

de dede R C L C e 0
dt dt dt

d e deLC RC e e
dt dt

− − − =

⎛ ⎞ ⎛ ⎞− − − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

+ + =

Mathematical Modeling of System

Basic Component
Equations

(Constitutive Equations)

L
L

R R

C
C

die L
dt

e i R
dei C
dt

=

=

=

KVL in R L C

R L C out

e e e e 0
i i i i 0

− − − =

= = =KCL

outin

R
out

L

C

( )2
out in

out
2

in

LCD RCD 1 e e

e 1
e LCD RCD 1

+ + =

=
+ +
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( )

out
2

in

2
out in

2
out out

out in2

1
e 1CD

1e LCD RCD 1R LD
CD

LCD RCD 1 e e

d e deLC RC e e
dt dt

= =
+ ++ +

+ + =

+ + =

Another Approach:  Impedance + Voltage Divider

Impedance:

ee iR R
i

di ee L LDi LD
dt i
de e 1i C CDe
dt i CD

= =

= = =

= = =

out

in
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Mathematical Analysis and 
Prediction

2
out out

out in2
d e deLC RC e e
dt dt

+ + =

out
2

in

e 1
e LCD RCD 1

=
+ +

Differential Equation

Transfer Function

L = 22 mH     C = 0.1 μF     R = 100, 200, 300, 400 Ω
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Unit Step Response
LRC Circuit

Frequency Response
LRC Circuit

MatLab
Step and Frequency

Response Plots



Electrical Systems K. Craig     53

2nd-Order Dynamic
System Model

2
0 0

2 1 0 0 0 i2

2
0 0

0 S i2 2
n n

o S

i
2
n n

d q dqa a a q b q
dt dt
d q dq1 2 q K q
dt dt

q K
1 2q D D 1

+ + =

ζ
+ + =

ω ω

=
ζ

+ +
ω ω

0
n

2

1

2 0

0
S

0

a= undamped natural frequency
a
a damping ratio

2 a a
bK  steady-state gain
a

ω =

ζ = =

= =

Step Response
of a

2nd-Order System
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( )
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1.8t   rise time

4.6t  settling time

M e   0 1   overshoot

1      0 0.6
0.6

−πς

−ς

≈
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≈
ςω
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ζ⎛ ⎞≈ − ≤ ζ ≤⎜ ⎟
⎝ ⎠

Unit Step Response
of a

2nd – Order
Dynamic System
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Frequency Response
of a

2nd – Order 
Dynamic System

-40 dB per decade slope



Electrical Systems K. Craig     56

Some Observations
• When a physical system exhibits a natural 

oscillatory behavior, a 1st-order model (or even a 
cascade of several 1st-order models) cannot 
provide the desired response.  The simplest model 
that does possess that possibility is the 2nd-order 
dynamic system model.

• This system is very important in control design.
– System specifications are often given assuming that the 

system is 2nd order.
– For higher-order systems, we can often approximate the 

system with a 2nd-order transfer function.
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• Damping ratio ζ clearly controls oscillation; ζ < 1 is 
required for oscillatory behavior.

• The undamped case (ζ = 0) is not physically realizable 
(total absence of energy loss effects) but gives us, 
mathematically, a sustained oscillation at frequency ωn.  

• Natural oscillations of damped systems are at the 
damped natural frequency ωd, and not at ωn.

• In hardware design, an optimum value of ζ = 0.64 is 
often used to give maximum response speed without 
excessive oscillation.

• At ω=ωn, the phase angle is exactly -90º.

2
d n 1ω = ω −ζ
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• Undamped natural frequency ωn is the major factor 
in response speed.  For a given ζ response speed is 
directly proportional to ωn.  

• Thus, when 2nd-order components are used in 
feedback system design, large values of ωn (small 
time lags) are desirable since they allow the use of 
larger control effort before stability limits are 
encountered.

• For frequency response, a resonant peak occurs for 
ζ < 0.707.  The peak frequency is ωp and the peak 
amplitude ratio depends only on ζ.

2 S
p n 2

K1 2                peak amplitude ratio
2 1  

ω = ω − ζ =
ζ −ζ
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• Bandwidth
– The bandwidth is the frequency where the amplitude ratio drops 

by a factor of 0.707 = -3dB of its gain at zero or low-frequency.
– For a 1st -order system, the bandwidth is equal to 1/ τ.
– The larger (smaller) the bandwidth, the faster (slower) the step 

response.
– Bandwidth is a direct measure of system susceptibility to noise, 

as well as an indicator of the system speed of response.
– For a 2nd-order system:

– As ζ varies from 0 to 1, BW varies from 1.55ωn to 0.64ωn.  For 
a value of ζ = 0.707, BW = ωn.  For most design considerations, 
we assume that the bandwidth of a 2nd-order system can be 
approximated by ωn.

2 2 4
nBW 1 2 2 4 4= ω − ζ + − ζ + ζ
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R = 200 Ω
C = 0.1 μF
L = 22 mH

n

S

1 21320 rad / sec
LC

3393 Hz

R C 0.213
2 L

K 1

ω = =

=

ζ = =

=

2

r
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s
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1
p

1.8t 0.084 msec
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ω

≈ =
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Unit Step Response
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eout



Electrical Systems K. Craig     62

2
p n

S

2

2
d n

2 2 4
n

1 2  =20330 rad/sec 3236 Hz

K
peak amplitude ratio 2.403 7.61 dB

2 1  

1 20830 rad / sec 3315 Hz

BW 1 2 2 4 4 32057 rad / sec 5120 Hz

ω = ω − ζ =

= = =
ζ − ζ

ω = ω −ζ = =

= ω − ζ + − ζ + ζ = =

Frequency Response

-40 dB per decade slope
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Measurements Using LabVIEW

• LRC Circuit
– Step Response
– Frequency Response
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