Managing
Model-Based
Design

Roger Aarenstrup

Managing
Model-Based
Design

Roger Aarenstrup

Copyright © 2015-2025 The MathWorks, Inc.
All rights reserved.

ISBN-13:978-1512036138
ISBN-10: 1512036137

Printed in the United States

ﬁ Printed on 30% post-consumer waste materials

Published by The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760

mathworks.com

This book is dedicated to all those who have confronted silent or

vociferous resistance to change, and prevailed.

About the Author

Roger Aarenstrup is a MathWorks consultant who has spent a

decade actively helping engineering teams and organizations adopt
Model-Based Design. In previous roles he performed large-scale
modeling and simulation for the Swedish Defense Research Agency,
designed motion controllers for surface-mounting robots at MYDATA
Automation, and developed real-time operating systems for ENEA.

He holds an M.A. in computer science and engineering, with minors in
automatic control and robotics, from the Luled University of Technology,

and an ML.A. in business administration (e-business) from the University

of Givle.

Acknowledgements

I would like to thank everybody who has participated in interesting
discussions on the subjects addressed in this book and provided con-
structive criticism. Many clients and colleagues have given different
perspectives and shed new light on old questions. A very special thank
you to Rosemary Oxenford for her hard work reviewing and editing the

material. And not to forget my daughter, Alva, who gives me strength.

Contents

1

4

13

24

38

48

56

66

71

75

77

Managing Change, Complexity, and Innovation
Inside Model-Based Design

Implementing Lean Development

Principles with Model-Based Design

Improving Development Methodologies with
Model-Based Design

Creating and Managing Knowledge
Enhancing Work Performance with Model-Based Design
Managing the Shift to Model-Based Design

Measuring the Value of Model-Based Design

Glossary

Bibliography

The Eight Core Concepts of Model-Based Design

Managing Change, Complexity,
and Innovation

o succeed in today’s competitive marketplace, engineering organiza-
tions must adapt to rapid technological change and satisfy a continuous
demand for new products and technologies. Whether the end product is
a mobile phone, a car, an airplane, or a wind power plant, innovation is

not simply a desirable goal; it is a necessity.

In one respect, creating innovative products and features has never
been easier. Inexpensive hardware, computational power, and sophisti-
cated design tools are readily available, making possible unprecedented
innovations. In another respect, however, innovation has never been

more challenging.

In what has become known as Moore’s Law, Intel cofounder Gordon
E. Moore observed that roughly every two years, the number of tran-
sistors on integrated circuits doubles. According to a 2020 report by
Deloitte, electronics make up 40% of the cost of a new car.

VElectronics Account for 40 Percent of the Cost of a New Car.” Car and Driver, May 2, 2020.
https.//www.caranddriver.com/features/a32034437/computer-chips-in-cars/.

Managing Model-Based Design

Driven by customer requirements, tightening safety and environmental
regulations, and market competition, the number of components in each
product continues to rise. Making all the components work together
becomes increasingly difficult, hindering the design and implementation

of innovative features.

The key challenges of innovation and complexity place pressure on en-
gineering organizations from every perspective—not only technical, but
also organizational, administrative, and cultural. Engineers must design
systems comprising many parts so that all the parts work together. Often
they must do so within shrinking development schedules, working with
geographically scattered teams, and using development methodologies
rooted in an Industrial Age culture, with its bureaucratic corporate struc-

ture and hard boundaries between departments.

Some organizations tackle system complexity by removing features or
by simply accepting lower performance. In other words, requirements
are changed to fit what has been made, and innovations are deferred

or canceled. Other organizations tackle the problem by hiring more
engineers. This approach can only work to a degree. As an organization
grows there are new challenges, such as communication and knowledge
sharing between departments and groups.

Tkujiro Nonaka points out that “In an economy where the only certain-
ty is uncertainty, the one sure source of lasting competitive advantage

is knowledge.” Managing change, system complexity, and innovation
requires, first, a shift of emphasis from production to learning and
knowledge management. Second, it requires a holistic approach in which
organizational structure, development methodologies, and knowledge
management are recognized as interdependent, and are considered

together.

In the past 20 years, organizations seeking to manage complexity

while staying innovative and competitive have increasingly turned

to Model-Based Design. Twenty years ago, the questions asked were,
“What is Model-Based Design?” “Does Model-Based Design work?” “Is
it efficient?” “Is it safe?” Today, the main question is, “How do we adopt

it in our organization?”

*Nonaka, Tkujiro. “The Knowledge-Creating Company.” hbr.org/2007/07/the-knowledge-creating-com-
pany/es. Accessed on September 9, 2014.

Managing Model-Based Design

w

Successful adoption of Model-Based Design requires careful manage-
ment of the change process, a thorough understanding of how
Model-Based Design works, and the ability to communicate its value to

key decision-makers.

Efforts to adopt Model-Based Design often start with one or a few
engineers who see the benefit of Model-Based Design and want to

convince the rest of the organization to adopt it as well.

'This book provides arguments and background information to enable
those engineers to champion Model-Based Design within their organi-
zation. It also serves as a guide for managers to take the lead in making
their organizations more efficient, effective, and innovative through
Model-Based Design. It provides a road map to the major concepts of
Model-Based Design, and shows how these concepts, used together or
individually, can help make any organization more efficient and better

prepared to meet the challenges of change, complexity, and innovation.

Managing Model-Based Design

Inside Model-Based Design

This chapter provides an overview of Model-Based Design and defines its

eight core concepts.

Model—Based Design is a model-centric approach to the

development of control, signal processing, communications, and other
dynamic systems. Rather than relying on physical prototypes and
textual specifications, Model-Based Design uses a model throughout
development. The model includes every component relevant to system
behavior—algorithms, control logic, physical components, and intellec-
tual property (IP). Once the model is developed (elaborated), it becomes
the source of many outputs, including reports, C code, and HDL code.
Model-Based Design enables system-level and component-level design
and simulation, automatic code generation, and continuous test and

verification (Figure 1.1).

Managing Model-Based Design

Research Requirements
Modeling and simulation

Continuous
test and
verification

Rapid
prototyping

Generation of
outputs

¢ Production code
* Reports
* Certification artifacts

Figure 1.1. Workflow for Model-Based Design.

Model-Based Design can support virtually any organizational type, and
it has been implemented successfully within many different development
workflows. How you implement it depends on the size, structure, and
culture of your organization, as well as the systems being developed

and the demands of your target market. You might choose to adopt
Model-Based Design enterprise-wide, transforming your entire devel-
opment process. Alternatively, you might apply it selectively to address

a specific challenge, such as a workflow bottleneck, a sudden change in

design requirements, or increased system complexity.

“Three years ago, SAIC Motor did not have rich experience
developing embedded control software. We chose Model-Based
Design because it is a proven and eff icient development method.
This approach enabled our team of engineers to develop the highly
complex HCU control logic and complete the project

ahead of schedule.”

—Jun Znu, SAIC MoTor CORPORATION

Managing Model-Based Design

Why Model-Based Design?

Model-Based Design provides a path to streamlining many aspects
of development. For example, organizations report that Model-Based
Design enables them to:

* Manage complex systems
* Automate time-consuming and error-prone tasks
* Quickly explore new ideas

* Create a common language that fosters communication and

collaboration
» Capture and retain intellectual property
* Increase product quality
* Reduce risk

Building an ECU with Model-Based Design

A team of automotive engineers sets out to build an engine con-
trol unit (ECU) for a passenger vehicle. Using a workflow em-
ploying Model-Based Design, the engineers begin by building a
model of the entire system—in their case, a four-cylinder engine.
This high-level, low-fidelity model includes simplified represen-
tations of the portion of the system that will be implemented in
software (the ECU) and of the environment (the plant and the
conditions under which the engine will operate).

The team performs initial system and integration tests by simu-
lating this high-level model under various scenarios to verify that
the system is represented correctly and that it properly responds
to input signals. Issues such as ambiguous requirements are often
detected at this early stage, when they are easy and relatively
inexpensive to fix. The model becomes an executable specification
that is used to verify textual requirements.

After running the first high-level system simulation, the team
adds detail to the model, continuously testing and verifying the

Managing Model-Based Design

system-level behavior against requirements and standards through
simulation. If the system is large and complex, the engineers can
develop and test individual components independently but still test
them frequently in a full system simulation.

Ultimately, the team builds a detailed model of the system and rele-
vant parts of the environment within which it operates. This model
captures the accumulated knowledge about the system (the IP). The
engineers generate code from the model of the control algorithms
for software testing and verification. Following real-time hardware-
in-the-loop tests, the team downloads the automatically generated

code onto production hardware for testing in an actual vehicle.

The Core Concepts of Model-Based Design

Model-Based Design is founded on eight core concepts:

Executable specification
System-level simulation
What-if analysis

Model elaboration

Virtual prototyping

Continuous test and verification
Automation

Knowledge capture and management

Executable Specification

An executable specification is a model that encapsulates all design

information, including requirements, system components, IP, and test

scenarios. It can be a model of the environment with use cases that the

embedded software needs to manage, or a high-level algorithm model

that specifies the implementation’s exact behavior.

An executable specification offers the following advantages over text-

based specifications:

A model typically includes more information than a text document.

Managing Model-Based Design

* Models are unambiguous, and do not require interpretation the way

a text document does.

* Because it includes unambiguous information, a model enables clear,
efficient communication between team members and with customers

and suppliers.

* An executable specification can be used to validate textual require-
ments—the requirements are modeled to ensure their consistency

and accuracy.

System-Level Simulation

In system-level simulation, a model of the entire system is simulated to
investigate system performance and component interactions. You can use
system-level simulation to validate requirements, check the feasibility of
a project, and conduct early test and verification. Simulation provides a
way to verify complex, multidomain systems that are more than the sum
of their parts.

Other benefits of system-level simulation include the following:
* Design problems and uncertainties can be investigated early, long
before you build expensive hardware.

* Simulations are safe—there is no damage to hardware or other

hazards if the design does not work.

What-If Analysis

What-if analysis is a simulation method used to test ideas and learn
about the system. You can perform what-if analysis to test a single com-

ponent or to investigate the interactions of all components in the system.

What-if analysis brings the same benefits as system-level simulation. In

addition, it enables you to:

* Quickly explore and evaluate multiple design ideas

* Generate new knowledge about the system (see “Knowledge Capture

and Management”)

Model Elaboration

Model elaboration is an iterative process that uses simulation to turn a
low-fidelity system model into a high-fidelity implementation. Model

Managing Model-Based Design

elaboration begins once you have simulated the high-level system model
to verify requirements. When the model yields the desired results, details
and refinements are added, and the model is simulated again. Com-
mon refinements include converting from floating point to fixed point,
converting from continuous time to discrete time, replacing a behavioral
actuator model with a detailed actuator model, and adding signals for

diagnostics.

Model elaboration enables the entire system to be continuously tested.
When there is an adequate level of detail, the parts describing the em-
bedded software can be used to generate code for rapid prototyping and
hardware-in-the-loop testing. With even more detail, the model

can be used for production code generation.

Virtual Prototyping

Virtual prototyping is a technique that uses simulation to validate

a design before hardware is available. In cases where the plant and
environment are not yet fully known or understood, such as a mechan-
ical construction, it may be necessary to use a hardware prototype for
experiments to build the model. The knowledge acquired from these
experiments is then stored in the model, where it can be transferred to

other developers, departments, suppliers, and customers.

Virtual prototypes save development time because building a model is
usually much faster than building a physical prototype. Virtual proto-
types also reduce cost and increase innovation because they enable a
team to quickly and safely try out new concepts. In many situations, a
model can replace a test rig. Using a model reduces development
bottlenecks, since test rigs are often a scarce resource.

Continuous Test and Verification

Continuous test and verification is the practice of simulating a design
at every stage of development. It is used to identify faults as soon as they

are introduced into the design.

Continuous test and verification can take different forms, and it can
be conducted at different levels, depending on the complexity of the
system and the stage of development. For example, it can be any of

the following:

Managing Model-Based Design

10

* Open-loop testing—testing a single component with predefined
inputs and specified checks for the outputs

* Closed-loop testing—testing a component or design with a model of

the environment and a plant model

* Rapid prototyping—generating code from the controller model to
test the software part of an embedded system against the actual plant

and environment

* Hardware-in-the-loop (HIL) simulation—generating code from the
model of the environment to test an actual embedded system against

a simulated environment in real time

Benefits of continuous test and verification include:

* Early identification of errors, reducing cost and development time
* Error reduction, increasing software quality

* Reduced risk, providing a cost-efficient, safe way to test scenarios

that could damage expensive hardware

* Increased understanding of the system

Automation

Automation is the practice of using scripts and tools to perform
repetitive tasks or tasks that are error-prone when performed manually.

Common automations within Model-Based Design include the

following:

* Generating production code

* Developing targets to customize generated code for specific target
hardware

* Generating reports, such as design descriptions and test results

* Conducting model checks to ensure that the model conforms to

guidelines
* Connecting to system databases for interface checks and setup
* Formally proving system properties

* Formally proving code correctness

Managing Model-Based Design

* Automatically building and testing an entire system, including

component tests

Automation in Model-Based Design brings the following benefits:

* The team can focus on design instead of implementation details.

* Faster development cycles make it easier to handle requirement

changes.

* Complex systems are easier to manage.

Knowledge Capture and Management

In Model-Based Design, models are the primary source of project
information. That knowledge includes not only design specifications and
details about the system under development, but also product knowl-
edge, team members’ design expertise, past experience, and design best

practices.

The models become a common language for the transfer of information
within teams and with customers and suppliers. Because the models
can be executed or simulated, the knowledge they contain increases as

understanding of the system grows.
Using models for knowledge capture and management helps to:

. Improve communication
* Preserve intellectual property
* Build a culture of knowledge sharing

* Improve project and business relationships

Managing Model-Based Design

12

Key Takeaways from This Chapter

* Model-Based Design is a model-centric approach to the
development of embedded systems.

Rather than relying on physical prototypes and textual
specifications, Model-Based Design uses a system model
as an executable specification throughout development.

* Model-Based Design enables system-level and compo-
nent-level design and simulation, automatic code genera-
tion, and continuous test and verification.

* Model-Based Design is founded on eight core concepts:

Executable specification

- System-level simulation

- What-if analysis
Model elaboration

- Virtual prototyping

- Continuous test and verification

* Automation
Knowledge capture and management

* Model-Based Design can support virtually any organiza-
tional type, and it has been implemented successfully
within many different development workflows.

Managing Model-Based Design

13

Implementing Lean Development
Principles with Model-Based Design

This chapter provides an overview of lean development and explains how the
core concepts of Model-Based Design support lean principles.

Originally developed by Toyota for the Toyota Production System,
lean development is a methodology based on specific principles and core
values. Lean development calls on management to invest in its employ-
ees and establish a culture of mutual respect and continuous improve-

ment. Fundamental to lean development are managers who have a lean

mindset and who coach the workforce as mentors.

The terms “lean development” and “lean production” are often used
interchangeably. The basic difference between lean development and lean
production is that lean development focuses on outlearning the compe-
tition while lean production focuses on outimproving the competition.
Of course, the two concepts are not mutually exclusive. An organization
that outlearns creates knowledge with a value for the customer faster.
The organization can use this new knowledge to deliver higher-quality
products with more innovative features.

Like the core concepts of Model-Based Design, lean development
principles can be applied within any organizational structure. At the
same time, implementing lean principles has the effect of shifting a
bureaucratic, hierarchical structure to one that is more decentralized

and organic.

Managing Model-Based Design

14

Seven Principles of Lean Software
Development

Poppendieck and Poppendieck (2003) define seven lean principles and

show how they can be used to improve software development practices:

Eliminate waste. Avoid incomplete work; knowledge scatter or loss;
task switching or interruptions; software defects; underutilized skills,
insights, or ideas; overproduction of features or elements; and unnec-
essary movement of people or materials. Adding unproductive layers of
management is also considered waste.

Amplify learning. Provide opportunities for developers to learn more
about the application domain. Implement short development cycles that

give immediate feedback on the design. Solicit feedback from customers.

Minimize bureaucracy. Simplify procedures and decision-making. Re-

duce administrative overhead. Remove superfluous management layers.

Decide as late as possible. Take the time to gather facts. Base deci-
sions on these facts rather than on hastily formed assumptions. The more
complex the system, the more flexibility should be built in. A flexible

architecture makes it possible to delay many implementation decisions.

Deliver as quickly as possible. Ensure that your product meets current

customer needs, not what the customer needed some time ago.

Build integrity into the process. Make the components of a system
work as a coherent entity. Ensure design consistency. Build perceived
integrity by helping the customer understand how the system is used,
delivered, or deployed.

See the whole. Recognize that complex systems are more than
the sum of their parts. Create well-defined interfaces and standardize
components to ensure that components work together. Build a strong

communication network with vendors and subcontractors.

Two Lean Development Core Values

Lean development is supported by two core values: respect for people,

and continuous improvement.

Managing Model-Based Design

15

Respect for People

Focus on building a strong work culture, boost employee morale, and

reinforce customer relationships by applying the following best practices:

* Reduce trouble for customers—do not make them wait, do not send
them defects, do not blame them for issues.

* Develop and invest in staff—teach and coach rather than direct.

* Lead by example.

* Develop cross-functional teams.

* Share knowledge and best practices rather than enforce processes.

Continuous Improvement

Ensure continuous improvement by rigorously applying concepts and

techniques such as the following:

* The five whys—find the root cause of a problem by asking “why?”
five times

* Fishbone (Ishikawa) diagrams mapping cause and effect

* The “go see” principle—go and see for yourself to thoroughly under-

stand an issue or situation

* Quality leaps—take a large step, or adopt new methods or ways of
thinking that allow for further improvements

Implementing Lean Development with
Model-Based Design

Model-Based Design supports the principles and core values of lean
development, and it can be a valuable method for implementing lean
principles in a development organization. In many cases, the tools and
concepts of Model-Based Design are a direct response to the need for a

lean approach.

The core concepts of Model-Based Design support all seven lean devel-

opment principles and both core values.

Managing Model-Based Design

16

Eliminate waste

With Model-Based Design, the entire development process is
completed in a single, integrated environment. Working in one envi-
ronment means less task switching. For example, it is more efficient
to do control design in the same environment that is used for plant

modeling.

System-level simulation makes it possible to try different solutions in

a cost-efficient way and quickly eliminate the unworkable ones.

Continuous test and verification ensures that errors are removed

early in development.

By automatically generating model coverage metrics, you can find
unused parts of a model and remove unnecessary code and superflu-

ous functionality.

By automatically generating code from the model, you eliminate the

error-prone step of manually translating designs into code.

Using models helps to reduce knowledge scatter or loss. Models can

be used to capture project details as well as engineers’ knowledge.

Models can work as specifications and are never ambiguous because
they can be simulated. If documents are required, they can be linked

to a model to make requirements clearer.

Amplify learning

System-level simulation and what-if analysis provide a fast and

efficient way to experiment, test ideas, and learn.

Models store much more information—and more accurate informa-

tion—than documents do.

Organizations can use models to help new employees get up to speed
quickly, while more experienced employees can use them to experi-
ment and create new knowledge. When an expert creates a model of
his or her view of the system, that expert’s knowledge is preserved

even if the expert leaves or is transferred.

System-level simulation provides instant feedback about a design.
Modeling the environment increases your understanding of the

system.

Managing Model-Based Design

Minimize bureaucracy

With Model-Based Design, you can reduce the impact of bureaucracy

on productivity by automating bureaucratic steps such as conducting de-

sign reviews, checking standards and guidelines, and generating reports.

Decide as late as possible

Models provide a way to delay certain decisions without compromising

productivity. For example:

Modeling and simulation make it inexpensive to try different solu-
tions and enable set-based development in which several solutions

are developed in parallel.

Models are generally independent of the target implementation. As
a result, you can select the target hardware (such as a DSP, FPGA,
or ASIC) later in the development process, or you can change the

hardware target without losing the implementation.

Deliver as quickly as possible

With an environment or plant model, algorithm development can

take place before hardware is built.

Automation streamlines the workflow and reduces delay. For example,
automatic code generation eliminates the time-consuming and

error-prone step of manually translating designs into code.

With models, testing does not have to wait for a full implementa-
tion. You can perform tests continuously during development using
techniques such as rapid prototyping and hardware-in-the-loop

simulation.

Your supplier’s component model can be simulated as part of your
larger system simulation. Component performance can then be
verified long before actual hardware or parts are delivered or even

manufactured.

Simulation and code generation give faster output and results, which

helps reduce cycle times.

Simulation makes feasibility studies faster and less expensive,
enabling your team to investigate more options without slowing

development.

Managing Model-Based Design

Build integrity into the process

* You can give external customers an early opportunity to steer devel-

opment by sharing simulation results with them.

* Models foster cooperation by showing team members how their roles
are interconnected and by enabling them to combine and test their
work. For example, a software engineer might work on integrating
algorithms in a software platform by customizing the code generator
and developing a suitable, flexible platform. An algorithm devel-
oper develops the algorithm in a model. Their combined effort can
instantly be tested by code generation and code integration.

* With automation, employees can more easily share best practices and

model guidelines.

* Model guidelines with automatic checks can ensure consistency in

the model design.

* With a system architecture and breakdown where each component
is designed as a separate model, there is strong component integrity.
The component can be tested and implemented as a separate entity,
but it can still be used with other models for full system simulation.
Each model has a “hard” interface, which means that the interface
and behavior during execution are the same regardless of whether it

is executed alone or as part of a larger simulation.

See the whole

* Building up simulation models of systems brings knowledge about
how a system works, the relationship between the different parts, and

which details are important and which ones can be ignored.

* Full system simulations are a key capability for managing the com-
plexity of a system. If components are divided and implemented as
separate models, they have well-defined interfaces. You may choose
to hide the contents in a model sent to a third party, but it is still
possible to use the model as a part of a larger simulation to evaluate

performance or to see how it fits into a larger system.

Managing Model-Based Design

19

Respect for people

Using models for communication can strengthen the network of

suppliers, customers, and other stakeholders.

Simulations let you present examples and user interfaces to your cus-
tomers frequently and early in the development cycle. You can give
customers accurate feedback about details or system performance.

Development teams using Model-Based Design can include people
with environment (plant) modeling knowledge, algorithm devel-
opers, test engineers, and software engineers. Using models makes
cooperation easier since the different tasks, although separated, are
still closely connected. The connections among work roles are well

defined, which makes cooperation easier.

Models are better than text documents for knowledge sharing and
including other people’s ideas. Models are also more engaging than

text documents, so they increase motivation.

Continuous improvement

.

Standards and guidelines can be implemented as checks that are
automatically performed on the model. In this way, formal imple-

mentation makes continuous improvement possible.

Formalizing best practices as an implementation means that the

practices themselves can undergo continuous improvement.

Simulation supports quality leaps by building confidence and provid-
ing an inexpensive and safe way to learn and reduce risk. The ability
to include legacy code in the simulation environment ensures that
existing functionality matches or works with new designs.

Managing Model-Based Design

20

Diagnosing a Controls Error Using Lean
Principles and Model-Based Design

A team of engineers is using Model-Based Design to develop con-
trols for a high-performance conveyor (Figure 2.1). Driven by a DC
motor with a ball screw, the conveyor moves circuit boards back and
forth to enable a robot to pick up and place components accurately.

A prototype of the conveyor is currently under test.

V

Tray

O Ball screw

Figure 2.1. Ball screw conveyor.

The test engineer is about to add new test cases when he is inter-

rupted by a phone call. He goes to take the call, leaving the convey-
or turned on but not executing any tests. When he returns about 15
minutes later, the conveyor is making an odd humming sound. The

developer reports the problem to the project leader.

Identifying the Cause of the Problem with Lean
Principles

Following the lean core value continuous improvement, the project
leader begins with stop, go see. She and the team meet and try to
reproduce the problem in the lab. They power up the conveyor but
do not give it any directions for movement. The humming sound

recurs, confirming that there is an issue.

Managing Model-Based Design

21

The next step is to take the time to gather facts. They conduct a
root cause analysis, beginning with the “Five Whys,” and incorpo-

rate the results into an Ishikawa diagram (Figure 2.2).

Other software Controller
Controller not
executed as Not tuned properly or
supposed wrong control method

1/0 driver issues Insufficient plant model

Tray vibration
Resonance
Encoder accuracy Bad
communication
Stick-slip friction between control

and mech. depts.
Bad mechanical
construction
Not controlled properly
(go to controller)

Discrete position values

Not controlled properly
(go to controller)

Sensors Mechanics

Figure 2.2. Ishikawa diagram for conveyor problem.

"Two possible causes of the problem are identified: stick-slip friction
and discrete position values from the encoder.

The project leader divides the team into two self-directed groups,
each responsible for investigating one cause. By allowing this
autonomy, she is amplifying learning (providing opportunities for
team members to learn more about the application), eliminating
waste (avoiding the addition of unproductive layers of manage-
ment), and minimizing bureaucracy (simplifying procedures and

decision-making).

Solving the Problem with Model-Based Design
Both groups begin by updating the plant model. One team adds the

details for the discrete encoder, and the other adds stick-slip friction
to the mechanics. They then use system-level simulation and
what-if analysis to investigate the effects of the updates.

Managing Model-Based Design

22

'The group investigating the discrete encoder identifies the issue.
They add simple quantization of the encoder signal. Test cases run
in the simulation model reveal no tray vibration. However, when
the team sets the desired position manually, they see flickering in
the control signal whenever a position cannot be met by the discrete
encoder. Because of the discrete steps in the encoder, a control error
remains, causing the integral part of the controller to grow. After a
long time, it is strong enough to move the tray to a position that is

still not entirely correct.

The team quantizes the input to the controller so that the encoder
can always represent the desired position. They also add test cases
to check for this problem. They generate code from the updated
controller, compile it, and download it to the actual machine. They
check for the newly found issue, but this time there is no noise. The

product can now be released without delay.

The team fixed the problem in a timely manner. But perhaps even
more important, they learned something new about the system.
They captured the knowledge gained in the plant and controller
models, where it can be applied to future projects. The main point

is that they learned to build a better system.

Managing Model-Based Design

23

G Key Takeaways from This Chapter

Lean development is a methodology based on clearly
defined principles and core values.

Like Model-Based Design, lean development can help
turn a bureaucratic, hierarchical structure into one that
is more decentralized and organic.

Model-Based Design is a direct response to the need for
lean development.

The core concepts of Model-Based Design foster lean
development principles.

Managing Model-Based Design

24

Improving Development
Methodologies with
Model-Based Design

This chapter provides an overview of common development methodologies and

explains how Model-Based Design core concepts support these methodologies.
It then explains how Model-Based Design can help you adapt any methodology

to the needs of your project.

Em the late 1970s to the early 1990s, the waterfall was the standard
software development methodology. Its rigid, stepwise approach fit well
into the bureaucratic organization at the time. However, the advent of
the Internet and other technological advances in the mid-1990s accel-
erated the pace of change in software projects, requiring more flexible

approaches.

Engineering organizations today use a wide range of development meth-
odologies. Ideally, the project manager selects the methodology that best
fits the nature of the project and the system being developed. In reality,
however, this is not always the case, and a team might be required to use
the same methodology for every project—not because it is optimal, but
because this is how the work has always been done.

From Construction to Evolution: Common
Development Methodologies

Most development methodologies lie on a spectrum between the
classical, plan-based “construction” approach and the more flexible and

iterative “evolution” approach.

Managing Model-Based Design

The following methodologies are the most common:

* Waterfall

* V-model

s Iterative and incremental development (IID)
* Spiral

* Scrum

* Extreme programming (XP)

Waterfall

The waterfall methodology breaks development down into five steps or
phases: requirements, design, implementation, verification, and mainte-

nance (Figure 3.1). Each step must be completed before the next begins.

Requirements

Design

Implementation

Verification

Maintenance

Figure 3.1. The waterfall methodology.

However, to be effective, waterfall requires team members to have solved
similar problems before. Moreover, its stepwise approach is too rigid to

handle changes in requirements and does not encourage innovation.

25 Managing Model-Based Design

26

Model-Based Design Within the Waterfall
Methodology

Model-Based Design enhances the waterfall methodology in these ways:

¢ Automation makes it easier to deal with change. It’s easier to redo a

step when tasks such as report generation are automated.

* System-level simulation makes it easier to manage complexity by

showing the interactions between components.

* What-if analysis fosters innovation by enabling team members to try
out new ideas quickly and without risk.

V-Model

The V-model development methodology is common in automotive or-
ganizations. Instead of proceeding through the steps in a linear fashion,
like waterfall, it bends upwards after the implementation (coding) phase,
thus matching each development step with a corresponding test phase

(Figure 3.2).

Requirements Acceptance
Analysis Test

System
Design

Architecture Integration
Design Test

Component Component
Design Test

Implementation

Figure 3.2. The V-model.

Managing Model-Based Design

The main disadvantage of the V-model is that the entire system design
is developed at the beginning. This makes it hard to work with complex
systems, where some components, interactions, or other elements might

not be known until later in the process.

Model-Based Design Within the V-Model
Model-Based Design enhances the V-model methodology

in various ways:

¢ Automation makes it easier to deal with change—it is easier to redo

a step when tasks such as report generation are automated.

* System-level simulation makes it easier to manage complexity by

showing the interactions between components.

* What-if analysis fosters innovation by enabling team members to try
out new ideas quickly and without risk.

* System-level modeling and simulation make it possible to devel-
op the entire system at the start even though key elements are not
known—these elements can be added later without interrupting the
development flow.

Iterative and Incremental Development

Iterative and incremental development (IID) proceeds in cycles (releas-
es) that take between one week and six months. The goal of each cycle is
to deliver a partially complete system for integration and testing (Figure
3.3). Typically, more time is spent on requirements in the early cycles
than in later ones, but all cycles include production coding. This means

that there are no prototypes or proof-of-concept releases.

Implement Implement Implement Implement

some some some
features features features

some
features

Release Release to
customers

System size grows with each cycle.

Figure 3.3. Iterative and incremental development.

Managing Model-Based Design

Teams select the tasks to implement in each cycle in different ways. In
risk-based selection, the riskiest tasks are implemented first. If they fail,
the project can adapt or be canceled. In client-based selection, the client
or customer determines which tasks to implement in each cycle and

whether to continue or terminate the project.
IID works well in the following situations:

* Tasks and features are independent.
* Features are being added to an existing, functioning system.
* Features and fixes are being added in a maintenance phase.

* Similar projects have been completed before, and dependencies

and complexity are well understood.

IID has these disadvantages:

* Risk evaluations and requirements analysis in each cycle introduce

a significant amount of ceremony (see “Managing Ceremony”).
g y ging y

* Incremental delivery requires a flexible architecture that allows
features to be added continuously. This can be a disadvantage if the
architecture is a significant part of all code, or if a fully functioning

system requires a large number of features.

* Incremental delivery is delayed when a project contains unknowns.
In such cases, extensive research that includes prototyping and exper-

imenting must be done before delivery can start.

* While shorter cycle times reduce the complexity of each cycle, prob-
lems may arise with full system dynamics as features are added. These

problems will not become evident until all features are in place.

* The overhead of risk assessments, requirements analysis, and plan-

ning can make this methodology inefficient for smaller projects.

Managing Model-Based Design

Model-Based Design Within 1ID
Model-Based Design supports IID in these ways:

* You can use automation to manage required tasks or ceremony.
* You can increase innovation by using what-if analysis and simulation.

* System-level simulation improves the methodology’s ability to

handle complexity.

* Automation and simulation can make the work in each cycle more
efficient, which helps to reduce cycle time. Automation also reduces
the overhead associated with risk assessment, requirements analysis,
and planning.

In addition, Model-Based Design enables you to incorporate a top-down
approach into the IID workflow (Figure 3.4). In a top-down approach,
more details are added to the design at each step in the workflow, and
the design is continuously evaluated via simulation for performance, risk,

functionality, and so on. This approach brings the following advantages:

* In early iterations, high-level models can be used to evaluate re-
quirements and design concepts. As a result, system and integration
problems are caught well before an increment is integrated into the

final product.

* With top-down development, prototyping and experimentation can
be completed rapidly, reducing the risk of delayed delivery for proj-

ects that contain unknowns.

* Simulation outputs and rapid-prototyping results can be presented
to the customer at every step of development, making it easier to

manage, document, and share complex systems.

* Managing change is easier in the top-down approach. Simulations
can be used to understand how the new component will affect the

system before the feature or component is deployed.

Managing Model-Based Design

Features
Features
Feature

Very low-
fidelity

Model with
real-time

Low- High-

fidelity
model

fidelity
model

model

capabilities

System Test with
simulation rapid prototyping

Figure 3.4. Iterative top-down development flow.

Spiral

'The spiral methodology uses many of the same steps as the waterfall
methodology: requirements, design, implementation, and testing. The
difference is that these steps are completed in one-year or two-year
cycles that focus on certain features of the whole system. Once a cycle
is complete, the team reevaluates the project risks and requirements,
and decides whether to continue. If the project continues, another cycle
begins. With each cycle, risk is reduced, and more features of the final
system are implemented (Figure 3.5).

T Cumulative cost
Determine objectives ‘ Assess risk
|
Review ____F__Mﬂ_
Plan next cycle Implement and test

Figure 3.5. The spiral methodology.

Managing Model-Based Design

The spiral methodology was designed primarily to handle risk in large
projects, but it also handles change and innovation well. Its iterative na-
ture enables the team to focus on experimentation and innovation rather
than on making the delivery. It scales well from small projects to large,

complex systems such as airplanes, military vehicles, or wind turbines.

The main disadvantages of the spiral are that it does not define specific
ways to manage complexity in a system under development, and that it
has only one major release, making it ill-suited to projects that must be
delivered piece by piece.

Model-Based Design Within Spiral Development

* You can support innovation in the spiral methodology by incorporat-

ing what-if analysis and simulation into design iterations.
* System-level simulation improves the ability to handle complexity.

* Automation and simulation can make the work within each cycle
more efficient, reducing the cycle time.

Scrum

'The scrum methodology arose from agile principles and takes a mini-
malistic approach to development. In scrum, development is performed
by small, self~-managed teams. Tasks are carried out during a two-week
to four-week period called a sprint. Participants report their progress at
daily scrum meetings. At the end of each sprint, the customer (who can
be internal) is required to accept the work and prioritize tasks remaining
in the work queue (Figure 3.6).

Product)
Backlog Daily Scrum 24 Hours

. Shippable
Sprint
Backlog /_\ Product
Sprint 2-4 Weeks -

Figure 3.6. A typical scrum workflow.

Managing Model-Based Design

Scrum demands very little overhead (waste). With its rapid iterations,

scrum handles fast-paced changes well.

Scrum defines how to plan and organize projects, but not the way de-
velopment work is performed. As a result, it provides no procedures for

managing complex systems with interrelated parts.

Model-Based Design Within Scrum

With system-level simulation, you can manage larger and more complex
systems because the simulations bring all parts together in each cycle,
making it easier for teams to handle interactions and interfaces. For
individuals on a scrum team, what-if analysis and other concepts of

Model-Based Design can prove useful.

Automation can help your team deliver large projects within the short

scrum cycles.

Extreme Programming (XP)

Like scrum, the XP methodology is derived from agile principles, but
scrum focuses on project management, while XP focuses on improving
quality and productivity by defining how to do the actual development

work.

XP proceeds in short development cycles known as releases, with built-in
checkpoints for introducing new customer requirements. XP emphasizes
extensive code reviews and unit testing of all code, but it avoids institut-

ing formal methods and documentation.

XP’s minimalist, decentralized approach requires highly experienced
programmers who share a workspace. Problems arise when team mem-
bers are geographically scattered, when less experienced engineers join
the project, or when team members leave and take their undocumented

or unstored knowledge with them.

Managing Model-Based Design

Model-Based Design Within XP

XP can benefit from Model-Based Design in a similar way that

scrum can:

* System-level simulation supports a decentralized approach by
enabling the team to keep the parts of the project together.
System-level simulation also helps manage complexity, interactions,

and interfaces between parts in this decentralized approach.

* Automation and continuous test and verification support the XP

practice of continuous integration (building and retesting).

* Knowledge capture and management using models supports XP’s
minimalist approach to documentation. Models serve as documenta-

tion and store knowledge if people leave or change roles.

Managing Ceremony

Every development methodology involves a certain degree of
ceremony—formalized steps and procedures, documentation, review
processes, and metrics. Typically, methodologies that use several short
cycles require less ceremony than those that use fewer, longer cycles

(Figure 3.7):

F'S
Many,
short

Cycles

V-Model

Waterfall

Few,
long

Low Ceremony High

Figure 3.7. Cycles vs. ceremony in common development methodologies.

Managing Model-Based Design

* Waterfall projects are noniterative and document-based and there-

fore, high in ceremony.

* V-model scores high on ceremony because it specifies formal steps

and documents for test and verification.

* IID uses a few long cycles and depends on continuous risk evaluation
and requirements analysis, making it high on ceremony.

* Spiral (not shown in diagram) has a few long iterations with contin-

uous requirements and risk analysis.

* Scrum uses a moderate number of cycles that do not have specific
ceremony requirements; as a result, it can be incorporated into a

process with any level of ceremony.
* XP has many short cycles and therefore, very little ceremony.

Model-Based Design can help organizations fulfill ceremony require-
ments without slowing development. Because Model-Based Design
automates procedures such as report generation and code reviews, more
ceremony or formality can be introduced without affecting cycle time.

At the same time, the automation of ceremony elements such as code
reviews means that a methodology with very low ceremony, such as
XP, can introduce more ceremony without losing the benefits of that
method. This can be useful if you need to incorporate certification re-

quirements into your workflow.

Managing Model-Based Design

35

Selecting a Development Methodology

Boehm and Turner (2004) divide the development methodologies
discussed in this chapter into two types: plan-driven (waterfall, V-model)
and agile (scrum, XP, and IID). Each type has a home ground (area of
special strength or competence). Plan-driven methodologies work well
for large, complex, high-integrity systems with stable requirements, large
development teams, and a culture that demands order. Agile method-
ologies are better suited to projects with changing requirements and

aggressive deadlines (Figure 3.8).

Ability to handle
size of the
organization or project

Ability to handle
» complexity of
the system

P

Ability to handle <
innovation N~

v

Ability to handle
change

Figure 3.8. The relative strengths of plan-driven approaches (green line) and agile ap-
proaches (yellow line).

When selecting a development methodology, consider these questions:

* How stable are your project requirements?
* How aggressive is the deadline?

* What size is the project?

* Are there critical resources involved?

* Is the project business-critical or mission-critical?

Managing Model-Based Design

36

Each question is easy to address individually, but considered in combi-
nation, they might require a tradeoff. For example, tradeoffs might be
required for a small project that is safety-critical and where requirements
are expected to change, or for a large project with aggressive deadlines

that calls for a critical resource.

As you consider these tradeoffs, however, bear in mind Boehm and
Turner’s observation that both plan-driven and agile approaches are
“critical to future software success.” Small projects and teams need to be
able to scale up, while large projects and teams need to be more nimble.

Improving Your Development Methodology
with Model-Based Design

Model-Based Design can help you adapt any development methodology

to your current needs.

Implementing the core concepts of Model-Based Design increases the
types and kinds of projects for which each development methodology
can be used. Similarly, a smaller project that is not mission-critical but
includes new technology and has a high risk can use a methodology that
has more ceremony, such as IID, even if the project involves only six

engineers.

Model-Based Design is particularly useful when there are tradeoffs

to consider. For example, if your project has a critical resource or an
expensive test rig, this points towards a plan-based waterfall or V-model.
Model-Based Design can help by introducing models you can simulate
instead of testing on the prototype. This eases the bottleneck that the
prototype causes and allows for a more agile or iterative approach to

development.

Another example is a small project with a safety-critical application. The
criticality of the project requires a plan-based approach including safety
standards. With Model-Based Design, you can automatically generate
many of the required documents and artifacts, as well as perform early
verification with simulation. Model-Based Design helps with the cere-

mony related to safety standards and allows for a more agile approach.

Managing Model-Based Design

Key Takeaways from This Chapter

Model-Based Design can help you adapt any develop-
ment methodology to better fit your current needs.

Most development methodologies lie on a spectrum
between a classical, plan-based “construction” approach,
such as the waterfall, and a more flexible and iterative
“evolution” approach, such as XP.

Typically, methodologies that use several short cycles
require less ceremony than those that use fewer, longer
cycles.

Model-Based Design can help organizations fulfill cer-
emony requirements without slowing the development
process. It can also enable a methodology with very low
ceremony to introduce more ceremony without losing the
benefits of that method.

Implementing specific concepts in Model-Based Design
increases the types and kinds of projects for which each
development methodology can be used.

Managing Model-Based Design

38

Creating and Managing Knowledge

This chapter presents common theories of knowledge creation and defines
knowledge creation in a development context. It then explains how Model-Based
Design enables teams and organizations to capture, leverage, preserve, com-

municate, reuse, and create knowledge.

In the Industrial Age, a company’s competitive advantage and profit-
ability were determined by the price of its products. Today, innovation
and the ability to adapt to rapidly changing markets and technologies are
more important. This shift in emphasis has increased the value of, and

need for, knowledge creation.

“When markets shift, technologies proliferate, competitors
multiply, and products become obsolete almost overnight,
successful companies are those that consistently create new
knowledge, disseminate it widely throughout the organization,
and quickly embody it in new technologies and products.”

— Ixujiro Nonakal

An organization must “outlearn” the competition by developing strate-
gies for creating and managing knowledge—not only knowledge of mar-
kets and technologies, but also intellectual capital, such as team mem-
bers’ expertise, past experience, insights, and design best practices. There
is no limit to how much knowledge an organization can create or to

how many innovations can arise from that knowledge. Often, however,

'Nonaka, I, (1991). “The Knowledge-Creating Company.” Harvard Business Review, July 2007.

Managing Model-Based Design

knowledge is underused because the organization lacks the infrastructure

and means to capture and transfer it.

Knowledge capture and management is a core strength of Model-Based
Design. A simulation model is articulated knowledge—a distillation of
the model builder’s expertise, skills, and experience. Other engineers can
experiment with the model to increase their own knowledge. In this way,

models can transfer and even create knowledge.

Before considering knowledge management with Model-Based Design,
it will be useful to briefly review some well-known theories of knowl-
edge acquisition, transformation, and transfer. An understanding of
how knowledge is acquired and transformed will help managers build

infrastructures that facilitate and advance the process.

What Is Knowledge?

Ackoft (1989) differentiates knowledge from data, information, and

wisdom:

Data is an unconnected fact, statistic, or statement that carries no
meaning by itself. Example: 75.

Information is processed data points. Example: 75 km/h is the speed
of a car.

Knowledge is a pattern developed from information that makes it
possible to predict future trends and behaviors. Knowledge is created by
attaching new information to an existing knowledge pattern. Example:
using the information above, together with an understanding of how cars

work (the pattern), to estimate time of arrival at a destination.

Wisdom is a context-independent understanding of basic principles
derived from the knowledge. Example: an understanding of how a car
works in comparison to other vehicles, or how speed affects a specific
traffic situation.

These four elements form a hierarchy. Progression up the hierarchy is

enabled by understanding (Figure 4.1).

Managing Model-Based Design

40

Wisdom
(Understanding
principles)

Knowledge
(Understanding patterns)

Information
(Understanding relations)

Figure 4.1. The progression from data to information, knowledge, and wisdom.

The two stages in the middle of the hierarchy—information and knowl-
edge—are the primary concern for most managers. The goal is for team
members to see patterns in information and apply those patterns to new
tasks or situations. To create an environment that optimizes this process,
it is first necessary to understand the relationship between tacit and
explicit knowledge, and to consider the knowledge-creation spiral.

Tacit and Explicit Knowledge

Nonaka and Takeuchi (1995) define tacit knowledge as subjective, expe-
rience-based knowledge that cannot easily be expressed in words, such as
cognitive skills, beliefs, mental models, and technical know-how. Explicit
knowledge is knowledge that can be codified and captured in manuals,
databases, presentations, models, and other media.

New knowledge is created when these two types dynamically interact—
when tacit knowledge is converted to explicit, and vice versa. The interac-
tion occurs in one of four conversion processes:

Managing Model-Based Design

Internalization—converting knowledge from explicit to tacit.
Internalization is the process of building or extending a mental model
by absorbing explicit knowledge, such as knowledge acquired from a
presentation or a prototyping experiment.

Socialization—converting tacit knowledge in one person to tacit
knowledge in another. In socialization, individuals acquire new knowl-
edge by interacting with those who already possess it. This process does
not require language. For example, a new employee working with some-

one more experienced will learn by observation, imitation, and practice.

Externalization—converting tacit knowledge to explicit. External-
ization is the most important mode of knowledge conversion for orga-
nizational knowledge creation. It is often accomplished with the help of
metaphors, analogies, concepts, hypotheses, or models. Externalization
occurs when tacit knowledge is acquired from others—for example, from
customers or technical experts—and translated into a readily under-

standable form, such as a presentation or model.

Combination—converting knowledge from explicit to explicit.
Combination enables knowledge to be transferred among individuals
and groups and across organizations through documents, email, data-
bases, meetings, or briefings. It occurs when different types of explicit
knowledge are systematically combined to produce new conclusions. For
example, you might combine knowledge about an organization’s internal
conditions with knowledge about external environmental factors to

develop a new business strategy.

The Knowledge-Creation Spiral

Nonaka and Takeuchi describe organizational knowledge creation as a
spiral (Figure 4.2). The spiral comprises the four knowledge-conversion
processes and two additional processes: justification and dissemination.

With justification, a new idea, concept, or piece of information is evalu-
ated by means of questions, such as “Is the new concept worth pursuing?”

“Do customers like it?” “Is it technically feasible?”

With dissemination, newly created knowledge is spread within and out-
side the organization, where it can be internalized by other individuals
who build up their own tacit knowledge. It can then be used for product

development, for process improvement, or in other ways.

Managing Model-Based Design

42

Acquiring tacit knowledge Sharing tacit knowledge

Internalization Socialization

______I____—

Combination | Externalization
Building prototypes Creating and justifying
Disseminating explicit L
knowledge Making tacit knowledge

explicit

Figure 4.2. The knowledge-creation spiral.

The knowledge-creation spiral starts with an individual’s thoughts or un-
derstanding (internalization). It moves up through socialization, where
individuals interact with colleagues and generate new ideas. Those ideas
are then articulated (externalization) and questioned (justification). They
become more widespread through the dissemination of new conclusions
derived from the combination of pieces of explicit knowledge.

As knowledge becomes more widespread, the spiral expands. At the
same time, as individuals access organizational knowledge, apply it, and
internalize it, they set the stage for an enhanced piece of knowledge to

work its way up the spiral.

Managing Knowledge Creation

Progress through the knowledge-creation spiral depends on efficient
management of the four knowledge conversions. Different types of or-
ganizations have strengths in different phases of knowledge conversion.
Bureaucratic organizations enable knowledge combination and internal-

ization; because a bureaucratic organization primarily handles explicit

Managing Model-Based Design

knowledge, combination is a natural process. Individuals can build up
their own tacit knowledge and internal understanding from the explicit

knowledge available in the organization.

Organic organizations, which are built on networks and task forces, are
more suited to socialization and externalization. Including individuals
from different disciplines on a project creates a foundation for shar-
ing tacit knowledge. When individuals communicate and negotiate in
the informal, organic organization, they need to externalize their tacit

knowledge, perhaps acquired by prototyping, to explain their views.

The following sections show how Model-Based Design can support or
enable internalization, socialization, externalization, and combination

within both bureaucratic and organic organizations.

Enabling Internalization

Internalization is a classic form of learning, and common in academia.
Students gain further understanding by absorbing (internalizing) explicit

information from books, papers, or discussions.

To internalize knowledge efficiently, you need an existing framework of

information on which to attach the new knowledge.

Models are much more efficient than books or reports for conveying
knowledge. They also provide a built-in framework on which to attach
new knowledge. The visual aspect of a model makes it easier to under-
stand the big picture and to extend the framework by attaching the new
knowledge. Using simulation makes it possible to experiment with the

model and get accurate results without ambiguity.

Enabling Socialization

In the socialization phase of knowledge creation, individuals learn from
each other by spending time together. In more bureaucratic organiza-
tions, socialization is considered wasteful. That trend is changing, as
offices are increasingly being designed around an open plan, with areas

designed to facilitate and encourage interaction and informal discussion.

Model-Based Design introduces a language and a way of thinking that
improves—and in some cases, actually enables—understanding and
communication. For example, when team members are working in a

graphical environment, it is much easier for them to see and understand

Managing Model-Based Design

what is going on than if they were using written documents or code.
Socialization is enabled because all team members share a common lan-
guage. They can use a system model to store their own tacit knowledge
and to access the tacit knowledge of their colleagues.

Enabling Externalization

Externalization of knowledge, whether in the form of a book, report,
presentation, or even software, is often valued and rewarded in an orga-
nization, since it produces a tangible result. Consequently, organizations
tend to overemphasize its importance, with the result that they often
deplete the store of internal or tacit knowledge.

When experts use Model-Based Design to build up models of a system,
they externalize tacit knowledge about the system. A model supports
the process of externalization and serves as a carrier for the knowledge.
Other team members can experiment with the model and build their
own understanding of the system.

Enabling Combination

Combination is fundamental to creative thinking and innovation, yet

it is the most underestimated knowledge-conversion activity. A common
assumption is that creativity must involve something new. In fact, the
most creative solutions often come from new combinations of existing
knowledge. Many “new” ideas are not new at all—they are old ideas

applied to new areas.

Combination is not only about combining ideas; it is also about com-
bining disciplines to create more complete solutions. For example, when
a hydraulic valve is combined with a computer, a computer-controlled

hydraulic valve is created.

While combination is important for innovation, it can be challenging to
bring about because it introduces problems of communication between
engineers from different disciplines, such as between hydraulic engineers

and computer engineers.

Modeling the environment (plant) is one way to design and simulate
multidomain systems (see the example “Using a Plant Model to Capture
and Manage Knowledge”). Not only does the plant model offer early
verification capabilities; it also provides a common language for individ-

Managing Model-Based Design

uals from different disciplines or groups to communicate and share best

practices.

Building a Knowledge-Creation Environment

Some environments foster knowledge creation more effectively than
others. Nonaka and Takeuchi (1995) identify five factors that are key to
a knowledge-creation environment: intention, autonomy, chaos, redun-

dancy, and variety.

Intention—An organization must articulate knowledge creation as an

intention and include it in visions and strategies.

Autonomy—Individuals should be permitted to work as independently
as possible. When employees take responsibility for their work, they have
to think and make decisions. The result adds to the knowledge base.

Chaos—Individuals become more creative when they work in a “chaotic”
environment—one where there is a sense of urgency (Sveiby, 1994).
When the work environment is too ordered, creativity can suffer. Man-

agement can foster a sense of urgency by setting challenging goals.

Redundancy—An organization should provide more staff and resources
than the project strictly requires so that team members can spend time
on knowledge creation. The redundancy can be introduced by defining
overlapping roles or by strategic job rotation.

Variety—When team members come from a variety of backgrounds
and bring diverse skills and experience to a project, as they do in
cross-functional teams, different inputs and perspectives are introduced,

so learning and knowledge creation increase.

Managing Model-Based Design

46

Using a Plant Model to Capture and Manage
Knowledge

An automotive engineering team is designing a supervisory control
system for a hybrid vehicle. They begin by building high-level con-
cept models of the plant and controller, which they use to select the
most suitable power-split architecture. After architecture selection,
the team adds detail to the control system model, including vehicle
speed, battery state of charge, and driver torque request. The plant
model, also reused from the concept selection stage, now includes
the engine, motors, batteries, brakes, and powertrain. The engineers
simulate the plant and controller together as a system, adding details
to the plant model as new details are implemented in the controller.

After testing the controller via simulation, the team has sufficient
confidence in the design to test it in a test rig. The results from these
tests differ in important respects from the simulation. This means
that the plant model must contain some inaccuracies. Further on,
the test rig gives the team more insight into how the plant works.
They refine the plant model based on these insights to make it more
accurate. This is the critical step: New knowledge has been external-

ized and stored in the model, ready for sharing.

The shared modeling environment makes it easy for team members
to collaborate. By dynamically interacting with the models, they
create new knowledge together and build on each other’s experience
and findings. They pool their skills and understanding of the system
to optimize performance. Because the model includes key system
information, they use it to demonstrate the new design to customers
and other stakeholders.

They test all the components, assemble the powertrain, and install
the system in a vehicle for onroad testing. Each insight acquired
during testing is captured in the model.

They check the plant model into a central repository, where every-
one in the organization can use it. As others experiment and inno-
vate, they, in turn, add knowledge to the repository, building the

company’s collective intellectual property.

Managing Model-Based Design

a7

Key Takeaways from This Chapter

Development organizations today must outlearn the
competition by developing strategies for creating and
managing knowledge.

New knowledge is created when tacit and explicit
knowledge dynamically interact in one of four conversion
processes: internalization, socialization, externalization,
and combination.

Organizational knowledge creation is a spiral process in
which individuals access, apply, and internalize organi-
zational knowledge, setting the stage for an enhanced
piece of knowledge to work its way up the spiral.

Knowledge capture and management is a core strength
of Model-Based Design.

Model-Based Design supports knowledge conversion and
the knowledge-creating spiral. It uses a model to capture
knowledge about a system, store new information, and
provide a common language and frame of reference for
team members. Team members can then share their
knowledge and learn from each other.

Managing Model-Based Design

48

Enhancing Work Performance
with Model-Based Design

This chapter outlines the key requirements for successful work performance
and explains how the core concepts of Model-Based Design can improve both

individual and team performance.

It is often assumed that the only requirement for successful work
performance is ability. However, an individual with the right skills but
no motivation will not perform well, and neither will a skilled individual
without the opportunity to exercise those talents. Three elements are
critical to successful work performance: motivation, opportunity, and
ability. In addition, managers must provide clearly defined performance

goals.

'The following sections discuss ways to increase your team members’
motivation, opportunity, and ability with Model-Based Design.

Performance and Motivation

At some point, most managers struggle with finding ways to keep their
teams motivated. Sustaining motivation is easier for small, self-organized
teams in an organic organization than for hierarchically organized teams
in a bureaucratic organization. However, it is challenging for any organi-
zation to motivate staff to perform the essential but repetitive tasks that

are part of any development process.

Managing Model-Based Design

Managers can make even these routine tasks motivating if they provide

the following:

Autonomy. Team members can plan their own work and affect its

outcome.

Feedback. Team members see the direct results of their task or proj-

ect—the more immediate the feedback, the higher the motivation.

Skill variety. Completing the task requires several skills. For example,
writing and compiling C code requires only C programming skills.
When the task also includes testing the code and designing interfaces,

however, it requires more skills and, as a result, is more motivating.

Task identity. Each team member takes pride in the work and is invest-

ed in its outcome.

Task significance. Several teams or individuals depend on the outcome
of the task. The more people who depend on the outcome, the higher the

perceived significance of the task.
Improving Motivation with Model-Based Design

Model-Based Design supports, and in many cases enables, each motiva-

tional factor outlined above.

Autonomy. With a model of the entire system, a single engineer can test
ideas and experiment with different solutions. Automation can increase
the number of tasks that a single engineer can perform. For example,
code generation for rapid prototyping means that a control developer
can test the controller on the target without involving software engi-
neers. Models or parts of models can be implemented first at a high level
and then at a more detailed level. As the model still simulates with the
rest of the system, the developer has some autonomy in deciding what to

change.

Model-Based Design provides the infrastructure to make work more
autonomous. For example, with a system model one team member

can implement an idea and then test it by simulating it with the entire
system. In addition, Model-Based Design supports a decentralized
approach to development, with task forces or small teams responsible for

SPCCiﬁC system componcnts .

Managing Model-Based Design

50

Feedback. Simulation provides almost instantaneous feedback on a
design idea or modification. For example, suppose that a control engineer
is tasked with selecting the best controller gains. With a traditional
approach (changing the parameters in C code, compiling the code,
downloading it to a target, and running it against hardware), the engi-
neer has little motivation to experiment. How many parameter changes
will be required? How much damage will be done to the hardware before
the right parameters are found? With a simulation model, a parameter
change can be made in seconds. The engineer can try many new ideas

and parameters quickly and without risk.

Skill variety. Model-Based Design makes it easy for team members

to take on tasks requiring new skills. When all project information is
captured in a system model, it is easier for a manager to provide skill
variety because individuals can rotate among different positions within
the team. For example, with code generation, algorithm developers, such
as control engineers, can become responsible for the software as well.
Model-Based Design supports both vertical skill variety (the worker
takes on increasing responsibility for difterent parts of the system or de-

velopment process) and horizontal skill variety (the task calls for a range

of technical skills).

Task identity. System simulation gives team members the “big picture.”
For example, simulation shows how a component that they work on fits
into the whole system. A system-level view extends the area that each
engineer can address. A control engineer, for example, can use simula-
tion to propose changes in the hardware. In some cases, you might be
able to let an engineer follow the development process from concept to
production. If specialization is required, you can use the system model to
visualize and demonstrate later steps in the process.

With automation, the control engineer can write a script that runs
through a sequence of parameters and automatically finds an optimal set.
Finding the optimal parameter adds an element of pride to the solution

and, therefore, increases task identity.

Task significance. Simulation clearly reveals the effect of a small com-
ponent on the whole system. Managers can use simulation to demon-
strate the importance of a task or component, or its connection to other
parts and dependencies. Allowing developers to explore their ideas using
what-if analysis and simulation makes them feel that their contributions

are meaningful.

Managing Model-Based Design

51

Performance and Opportunity

'The opportunity to exercise skills, influence the outcome of a project, and
suggest or explore new ideas is probably the most overlooked aspect of
performance. Lack of opportunity can be a result of organizational struc-
ture, the skill sets of other team members, or the constraints of project
deadlines. Whatever the cause, there are several steps a manager can take
to provide team members with more opportunities to perform well.

For example:

* Give them access to key information, resources, and people.
* Actively negotiate for the resources they need.

* Allow them time to work on special ideas or workflow

improvements.

* Establish a culture in which knowledge and resources are shared and

communication flows.

Increasing Opportunity with Model-Based Design

Ensuring that opportunity exists for employees is primarily a social and
management concern. However, the core concepts of Model-Based
Design enable team members to create opportunities for themselves by
exploring and testing new ideas. With system-level simulation, an idea
can be evaluated in a time-efficient and cost-effective way. No expensive
hardware or resource coordination is needed. Engineers can even use
system-level simulation to test their ideas against the full system. To
provide the opportunity for this, managers can set up an open, freely ac-
cessible repository that includes all relevant models. This repository can

become a mechanism for capturing interesting and feasible new ideas.

Performance and Ability

Ability is, of course, a vital ingredient of performance, and most man-
agers devote considerable time and attention to improving the skill sets
of their teams. The traditional approach to skill enhancement is through
training courses. In many cases, training focuses on improving weakness-
es, which, at best, results in average performance. Less formal methods
such as coaching and mentoring, which focus on the individual, can be

more effective. A key requirement is that each individual realizes his or

Managing Model-Based Design

her own potential and has a clear path to success. For many individuals,
having clear goals is sufficient motivation for them to start learning by

themselves.

Developing Individual Ability with Model-Based
Design

The tools, infrastructure, and core concepts of Model-Based Design
enhance a team member’s abilities. For example, graphical tools with
simulation capabilities extend an engineer’s ability to understand and
develop complex systems. Automation, such as code generation, enables
an engineer to work more quickly and efficiently. It also adds to an engi-
neer’s ability to learn by reducing the risk of errors that he or she might
make while learning. Human errors often occur randomly. Automation
such as automatic model reviews enables a systematic approach to error

correction. If an error is detected, it is fixed and never seen again.

While some engineers learn well by listening or reading, many need

to try things themselves. For those individuals, what-if analysis is an
excellent way to learn about a system. An engineer can experiment with
a model of the system and learn how it works. In this way, the engineer
increases his or her own knowledge and contributes to the knowledge of
the entire team.

Improving Team Performance

To improve team performance, the manager must establish long-term
goals and motivate team members to work toward those goals. Team
performance is optimal when all members are working toward the
same goal. Including team members in the development of the goal can

increase motivation and commitment.

Managing team performance depends on efficient communication,
especially when teams are cross-functional or geographically scattered.
'The introduction of a simulation environment and models gives the
entire team a common language, even if team members have different

areas of expertise and come from different countries.

Managing Model-Based Design

53

Increasing Motivation and Performance
for an Automotive Test Engineer

A test engineer at a large automotive company is responsible for
implementing new test cases when a software platform or applica-
tion changes. This task carries a high degree of task significance—
test systems have a clear purpose and are an important part of the
development process. There can be no system test executions and no
release without them, which means that others depend on this task.
At the same time, however, test-case implementation is repetitive
and routine.

What can a manager do to make this routine task rewarding? Can
the task be turned into opportunity that motivates the engineer to

excel?

Using a Traditional Approach

Using a traditional approach, the test engineer receives a document
just before the new release. That document details the changes and
specifies the number of test cases, the input signals to use, and the
correct output. The engineer checks out the test system code from

a configuration management system, adds the new test cases, and
executes the system to verify the changes. This is merely a dummy
test, as the changes to the application or platform have not yet
been implemented. The actual test execution is completed much
later in the process. If there are no compiler or execution errors, the
engineer checks the code in, updates the test system document, and

sends it to the project manager.

The traditional approach gives the engineer very limited
autonomy—a report that initiates the task is handed over, and the
work is predetermined. The engineer receives feedback only if there
is an implementation error. Since the job is complete once the
dummy test has been run, the engineer sees only a small part of the
workflow and will never know the outcome of the real tests. The
only skills required are basic programming and the ability to add the
test cases and compile the code.

Managing Model-Based Design

Because test case creation is an established, well-defined part of

the development process, changing it will affect other parts. No part
of the work can be removed, so the only changes that can be made
are to add to the task. The manager is reluctant to do this, fearing
that adding to an already unrewarding task will lower, not raise,

performance.

Using Model-Based Design
By applying the core concepts of Model-Based Design, the task of

implementing test cases can be made more motivating. It can also
be designed to increase the engineer’s skill set and to present the

engineer with opportunities to excel.

For example, skill variety can be greatly improved. As a comple-
ment to implementing test cases, the manager can introduce formal
property proving and additional tools for verification and validation.
'The engineer can have a side project to develop an automated test

process with nightly builds and automatic execution of test cases.

'The manager can create a test design task force that includes the
engineers who implement test cases, those who run the tests, and
those who write the test case specifications. This task force can meet
regularly to identify issues with the test process and discuss ways to
improve it. Members can spend some of their time implementing

the improvements.

Letting the test engineer implement improvements and participate
in task force meetings significantly increases motivation and job
satisfaction. Feedback improves because the test engineer is part of
a team that sees the overall result of the tests. Task identity increases
because the engineer sees more of the process and is able to affect
the outcome. Skill variety increases because more skills are needed
to develop the process and implement improvements. Task signifi-
cance also increases because affecting the entire test process affects

other parts of the organization.

With the task force up and running, the manager can shift from
supervising the team to coaching and advising and, thereby,

continue to improve the team’s performance.

Managing Model-Based Design

55

Key Takeaways from This Chapter

» Work performance depends on three critical factors, all
of which must be present for successful performance:
motivation, opportunity, and ability.

* Model-Based Design increases individual performance
by enabling managers to provide motivation, opportunity,
and ability.

* The tools and infrastructure of Model-Based Design
enhance motivation, opportunity, and ability by:

Providing a graphical view of the complete system to
increase understanding

Encouraging experimentation

Providing a mechanism for developing and storing
promising new ideas

* Model-Based Design increases team performance by:

Providing a common language for cross-functional or
geographically scattered teams to communicate

Making it easier for teams to understand and commit
to shared project goals

Managing Model-Based Design

56

Managing the Shift to
Model-Based Design

This chapter provides a road map to the adoption of Model-Based Design. It cov-
ers the challenges of introducing a major change to a team or an organization,
the four stages of creating change, practical and logistical requirements for im-

plementing Model-Based Design, and six steps to a successful implementation.

E' the past 10 years, a transmission control engineer has developed
control systems and programmed them in C code. This engineer holds

a senior position, and he feels comfortable with the way he works. But
then he learns that his team plans to adopt Model-Based Design and
that he will have to change his development process. In the future, he
will be required to develop the control system using a model, implement
test cases to work with the model, and prepare the model for automatic
code generation. Naturally, he feels anxious about this disruption, and
doubts its value. How can a manager help this engineer not only to

understand the new approach but to embrace it?

Introducing Change: General Considerations

Shifting to Model-Based Design brings the same challenges as imple-
menting any major and potentially disruptive change: resistance from
team members and upper management, skepticism about the value of the
new approach, anxiety, and reduced morale. Managers can mitigate these

concerns by following some general guidelines and principles:

Managing Model-Based Design

57

* When advocating for the shift to Model-Based Design, clearly com-

municate the benefits to the organization that will result.

* Answer a question most staff members have: How will the change
benefit me? Explain exactly how the change will affect individual
team members. How will their roles and responsibilities change?
Will they still be able use the knowledge and skills they have ac-
quired up to this point? What tangible benefits does Model-Based
Design offer them?

* Involve the team in the implementation and let team members affect
the process. They will accept the change more readily.

* Avoid responding to resistance by halting the adoption before all the
benefits of Model-Based Design have been realized.

* Recognize that full adoption at a large organization can take years,
during which time your organizational structure is likely to change.

Build flexibility into the process to account for such changes.

* Even when management has agreed to implement Model-Based
Design, proceed gradually. Step-by-step adoption is often the best
approach. Use short-term wins to drive the change.

* Create a rollout plan that defines the end goal, shows how you will
use Model-Based Design to achieve the goal, identifies key imple-

mentation milestones, and provides a clear and realistic timeline.

The Adoption Process

Preparation is key to the successful adoption of Model-Based Design.
You need to know where your team or organization is today, where you

want it to be, and how you plan to get there.
Follow these five steps in your adoption process:

1. Analyze the current situation.

2. Set process improvement objectives.

3. Decide what change options you will use to reach the objectives.
4. Implement the changes.

5. Follow up.

Managing Model-Based Design

58

Throughout the process, consider how you will measure the change
efforts, and what metrics will be useful once you have adopted

Model-Based Design (sce the section “Measuring the Outcome”).

While it is important to be systematic in your adoption process, avoid
overplanning. Even the most prepared and planned change effort is
messy—keep your plan flexible enough to deal with uncertainty.

Step 1. Analyze the Current Situation

In the analysis stage, you first determine why change is necessary. What
problems will it address? What will the change achieve or improve? For
example, teams that have shifted to Model-Based Design commonly cite
the following goals:

* Reducing development time
* Finding errors earlier in the process
* Managing increasingly complex systems
* Managing change in the market or in product requirements
* Managing risk
* Improving communication
* Complying with standards or certification requirements
Next, you analyze the internal and external environments within which

your team or organization operates.

The external environment includes all the social, legal, economic,
political, and technological factors that affect an organization and the
way work is done. For example, an automotive organization must comply
with environmental laws by designing reduced-emission vehicles. For

a marine engine manufacturer, engine performance—a technological

requirement—could be more important.

What drives the current market for your organization? Is your goal to
reach a large number of customers with rapidly changing demands, or
is it to establish a few long-term relationships with large companies or

organizations?

'The internal environment focuses on the situation within the organiza-

tion, and it addresses questions such as these:

Managing Model-Based Design

* What development methodology do you use?
* What works well and what does not?
* What are the strengths and weaknesses of your team or organization?

* How does your team or organization deal with the requirements of

the external environment?

* Is there a formal knowledge layer to support knowledge sharing and

creation?

* Does your organizational structure aggravate or minimize the prob-
lems you identified?

Step 2. Set Process Improvement Objectives

Once the situation is clear and specific problems have been identified,
you can begin setting objectives to address those problems. Select im-
provements that will produce quick results. These results can be used to

drive the change effort.

The most effective objectives are SMART (specific, measurable, achiev-
able, relevant, and time-bound). For example, if your goal is process
improvement, you might formulate your objective as follows: “The team
will identify two bottlenecks in the current development process and

reduce them within nine months by using Model-Based Design.”

Step 3. Select Change Options

To ensure a good result and ease the transition to Model-Based
Design, managers should involve team members in generating, evalu-
ating, and selecting options. For example, to meet the process improve-
ment objectives defined in step 2, a team might generate the following
list of options:

* Create a formal test harness.

* Verify system performance via simulation.

* Introduce rapid prototyping to verify individual components.

* Generate production code from a component model.

* Use models instead of documents for communication between

research and application development.

Managing Model-Based Design

* Implement a library with models of different parts of the environ-
ment to enable closed-loop simulations for test, verification, and

experimentation with different solutions.

After discussing the options informally and applying formal evalua-
tion criteria, such as scoring systems, managers would select two of the
options:

* Create a formal test harness for selected components.

* Implement a library with environment models.

The team might select these options because they will produce the most
immediate results. These short-term wins can be used to drive additional

changes.

Step 4. Implement the Changes
When course of action is clear, implementation can proceed without
undue disruption to the team’s day-to-day activities. However, before
beginning implementation, make sure that the following are in place:
* Rollout and communication plan
¢ Team training
* Appropriate tools
* Configuration management system

* Testing platform

Step 5. Follow Up

To ensure that future changes go smoothly, rigorous follow-up analysis
is highly recommended. After implementing each change, ask these

questions:
* What went well?
* What obstacles did the team encounter?
* What is the next step?
* What was learned?

Use the information gained from this analysis to guide future changes.

Managing Model-Based Design

61

Measuring the Outcome

Metrics that provide reliable, objective measures of performance and

progress can be used to:

Set targets

Communicate progress

Evaluate the current situation against the plan
Measure success

Estimate return on investment (ROI)

Influence future actions

Both quantitative and qualitative measurements are valuable, but avoid

overmeasurement, which is costly and can complicate the issue. Your

goal is to measure just enough. Focus on the relevant issues, such as the

process bottlenecks identified in your SMART objective.

When developing metrics, follow these best practices:

Decide what you need to measure. What results or outcomes will be

monitored?
Determine what data will provide the information you need.

Connect the data you collect to the desired outcome. When context

is added, data becomes information.

Decide how you will present the data. Tailor your presentation to
the target audience. Reports and graphs are common, but scorecards,
which might include graphs or plots showing different perspectives
of the data, provide a more complete picture.

Decide how often the information will be evaluated.

Review the data-collection process at regular intervals: weekly,

monthly, or quarterly.

Create a feedback loop in which you monitor results to help fine-
tune plans for subsequent phases or follow-on projects. For example,
regularly measure target execution time for each component in the
system. This action will catch unrealistic implementations and give

an early estimate of the processing power you need.

Managing Model-Based Design

62

Model Usage

* Gather metrics comparing when and how many failures are found
in each development phase before and after adopting Model-Based
Design.

Adoption Models for Implementing
Model-Based Design

Many organizations planning to adopt Model-Based Design find that
adoption models help them identify where they are in the adoption
process and where they want to be. An adoption model is also useful
when communicating the goal to the organization. You can develop your
own custom version, but best practices for implementing Model-Based
Design have led to the frequent usage of two adoption models.

The nine-box model shows the extent to which your project team, de-
partment, or organization has adopted the core concepts of

Model-Based Design (Figure 6.1).

Modeling SRifnaI::Ia-ltIi':; Production
and Simulation and Testing Code Development
Systematic
Testing of System Verification Rea/?-l'JI'ti(r)n”;a'lEee:tin
Algorithms g
Simulating
Algorithms) ’ Hardware-in-the-Loop
with System Sz Skt Simulation
Models
Developing . . . n
Algorithms Algorithm Modeling Rapid Prototyping
No code generation Code gen for testing Code gen for production

Code Generation

Figure 6.1. The nine-box adoption model. The arrow shows a potential adoption path for an
organization that currently uses system simulation.

Managing Model-Based Design

63

Figure 6.1 shows models being used only for graphical specifications.
'The project’s goal is to fully implement the concepts of Model-Based
Design. Each step on the way to full adoption provides some benefit. If
that benefit is highlighted as a short-term win, it can be used to drive
further change.

'The industry adoption ladder shows the level of collaboration among
individuals, departments, and organizations that models have enabled

(Figure 6.2).

Corporate

Department

Individual Project

Individual Users

Figure 6.2. Adoption ladder for Model-Based Design, focusing on model usage.

Six Ways to Ensure a Successful Implementation

Most organizations that have successtully adopted Model-Based Design
follow the six steps outlined below. These steps might overlap or be

Managing Model-Based Design

tackled in a different order, but all must be completed to ensure success.

Specify the problem you want to solve and communicate it to your
team. Be clear about why you are adopting Model-Based Design, both to
ensure that you are solving the right problem and to enable you to com-
municate the reason effectively. For example, if reduced time to market is
the reason, show a graph illustrating the historical year-over-year increase
in the time required for system integration and test. Then, present graphs
demonstrating the consequences—for example, the number of new fea-

tures that were developed but not included in the final product.

Create a team to drive the implementation. This team must have
enough influence in the organization to coordinate and drive the change.
Later in the process, the team members will develop and maintain best
practices and customizations and be the go-to people for questions about
Model-Based Design. Include the R&D manager and one individual
from each group (research, platform, and application development). It is
a good idea to include one individual who is resistant to the change.

Create and communicate a vision. Describe a desirable future for the
organization. What will the organizational workflow, work style, and

culture be like after the change? How will the change benefit individual
employees? How will it change their jobs and their status in the organi-

zation?

Enable team members to act—remove obstacles. Provide the
necessary training on new tools, workflows, and best practices. Run
basic training for all employees affected by the change, and specialized
training for those with specific responsibilities. Remove obstacles, such

as unavailable software licenses.

Plan for and create short-term wins. To maintain motivation and
continue to drive the adoption, demonstrate all the improvements that
have resulted from the change within a few months. When communi-
cating these improvements to the team, use the terminology and core
concepts of Model-Based Design.

Institutionalize the new approaches. Once Model-Based Design has
been implemented, set up a system to ensure continuous improvement.
Maintain customizations, workflows, and best practices. Provide a mech-
anism that allows others to submit suggestions and work improvements.
Capture and analyze lessons learned from completed projects.

Managing Model-Based Design

Q Key Takeaways from This Chapter

* Implementing Model-Based Design is likely to bring the
same challenges as any major and potentially disruptive
change: resistance from team members and upper man-
agement, skepticism, anxiety, and reduced morale.

A successful adoption process includes five steps:
1. Analyze the current situation.

2. Set process improvement objectives.

3. Select change options.

4. Implement the changes.

5

. Follow up.

Demonstrating short-term wins builds momentum and
bolsters the change effort.

The following must be in place before implementation of
Model-Based Design begins:

Rollout and communication plan
- Team training
- Appropriate tools
- Configuration management system

- Testing platform

Use appropriate metrics to evaluate the change process
and its results.

* Adoption models, such as the nine-box model or the
adoption ladder, can help you evaluate the progress of
the implementation and communicate it to the team or
organization.

Managing Model-Based Design

66

Measuring the Value of
Model-Based Design

This chapter reviews common approaches to evaluating a new workflow or
business strategy. It identifies where Model-Based Design adds value to an
organization, project, or workflow, and which criteria and metrics to use in order

to measure that value.

T:e classic way to measure the value of a new approach or business
strategy is to calculate return on investment (ROI). Financial returns are
important for organizations whose corporate strategies are based on cost
savings, but cost savings are not always the primary concern. A compa-
ny making large mechanical constructions, such as gas turbines, where
software is only one part and new features are customer-driven, might
focus on cost. On the other hand, a company that produces enterprise
software, where production costs are minimal but a constant stream of
innovative products is essential to retaining market share, might priori-
tize innovation over cost.

When measuring the value of Model-Based Design for your project,
team, or organization, by all means calculate the cost savings—especial-
ly in the early stages of adoption, when short-term financial wins can
help drive further adoption efforts. However, ROI calculations support
further investment rather than showing the full value of implementing
Model-Based Design. Be sure to consider additional factors. What were
your goals, both short-term and long-term? What did you set out to im-
prove by implementing Model-Based Design? What objectives did you
set? Which core concepts of Model-Based Design did you implement?

Managing Model-Based Design

67

Calculating the ROI of Model-Based Design

While most of the core concepts of Model-Based Design yield measur-
able ROI, automation is the most direct source. It is also the easiest to
demonstrate. For example, you might calculate the value of automatic

code generation as follows:

If the cost of writing code today is $5 million per year, the best possible
savings would be $5 million. From that amount you would subtract the
cost of tools, as well as the number of engineer- hours spent on creating
models, setting up test harnesses, and simulating the models for verifi-
cation and validation. You would then factor in the indirect benefits of
automatic code generation. For example, you might find that since the
adoption of code generation, the number of code failures has dropped
significantly. The resulting cost savings would be included in the ROI

calculation.

The cost savings from reducing the number of code failures can be high,
but they still provide a limited view of the ROI of Model-Based Design.
For example, you might find that the adoption of Model-Based Design
has improved your team’s ability to manage complex systems. This ability
can be a significant advantage—even essential for survival in a compet-
itive market—and its ROI is best measured in terms of product sales
rather than cost. Similarly, you might find that Model-Based Design has
saved time, enabling your team to focus on creating innovative designs
and products. You would calculate the ROI of innovation not by time
and cost savings, but by the increases in new product development and
market share that have resulted.

When presenting this wider view of ROI to colleagues or upper man-
agement, be sure to set expectations by pointing out that the actual

return sometimes comes a long time after the investment.

In summary, cost saving is an important factor but not the primary
means of evaluating the benefits of Model-Based Design. Focus your
evaluation on the longer term and on how Model-Based Design enables
your organization to stay competitive. The ability to manage more com-
plex systems, adapt to change, and to innovate are the key considerations,

not the specific amount saved.

Managing Model-Based Design

68

Alternative Approaches to Measuring the
Value of Model-Based Design

While RO is an effective measure of tangible assets, such as real estate,
inventory, or stock prices, the primary impact of Model-Based Design is

on an organization’s intangible assets.
Intangible assets are commonly classified as three types (Sveiby, 1997):

* External structures—brands, relationships with customers, and rela-

tionships with suppliers

* Internal structures—management, legal structure, manual systems,

employee knowledge and experience, R&D, and IP
* Employee competence—education, experience, and ability

Managers can drive further adoption efforts by demonstrating how
Model-Based Design—in particular, the use of models and simulation—

improve or enhance these intangible assets.

External Structures

As previous chapters have shown, using models to capture requirements
and product specifications improves communication within and among
teams. When you share models with your customers and suppliers, you

also improve a key component of your organization’s external structure:

customer relationships.

For example, suppose that a manufacturer of DC motors and controllers
sends a controller model to its customer. This model is legally accred-
ited as a proposal. The customer uses the proposal model in a system
simulation to verify its performance. Simulation reveals an error in the
step disturbance response. The customer sends the model back to the de-
velopment team and requests refinements. The team quickly implements
the new requirements and sends the updated model back to the custom-

er. These iterations continue until the controller behavior is satisfactory.

Both the customer and the manufacturer benefit from this interaction.
The customer gains reliable designs and a swift response to requests
for changes, while the manufacturer gains system information that
can be stored in the knowledge layer and applied to future projects.

Communication is unambiguous because a model reduces the chance

Managing Model-Based Design

69

of miscommunication or error. Iterating on the model improves the

relationship by fostering a sense of collaboration, openness, and trust.

Brands can be strengthened by more innovative products, higher quality,

and fewer failures.

Internal Structures

Many organizations find that the value they most realize from
Model-Based Design in this area is a significantly enhanced knowledge
layer. When used properly, a model repository and processes for its use

are important internal structures that can increase a company’s value.

A sophisticated model repository that incorporates model accreditation
levels and related documentation can form the core of a company’s
innovation process, as well as its development process. Deviations from
requirements and faults in software are continuously fed back to improve
the models.

Employee Competence

System modeling and simulation are proven ways to acquire experience
and competence. This is true for small simulations to develop control

systems, all the way up to training simulators for pilots and astronauts.

To encourage experimentation and foster learning, managers should
make the repository as open and accessible as is compatible with pro-
tecting IP. New employees can use the model repository to build up their
knowledge. Experienced engineers can use it to teach new team mem-
bers about the system under development and to share their own skills

and experience.

Managing Model-Based Design

70

Key Takeaways from This Chapter

* Calculating cost savings can be a useful measure of the
value of Model-Based Design in the early stages of adop-
tion, when it can be used to demonstrate short-term wins.

Cost savings motivate further investment rather than
showing the full value of implementing Model-Based
Design.

The full value of Model-Based Design should be sought in
product sales.

Cost savings calculations do not capture increases in the
ability to manage change, handle complexity, or develop

innovative designs and products that have resulted from

the adoption of Model-Based Design.

While most of the core concepts of Model-Based Design
yield measurable ROI, automation is the most direct
source and the easiest to demonstrate.

ROl is an effective measure of tangible assets, such as
real estate, inventory, or stock prices, but the primary
impact of Model-Based Design is on an organization’s
intangible assets.

Managing Model-Based Design

71

|
Glossary

Automation. The practice of using scripts and tools to perform repetitive

or error-prone manual tasks.

Autonomy. Freedom for team members to plan their own work and

affect its outcome, thereby increasing their motivation.

Bureaucratic organization. A centralized, hierarchical organization

that follows specific, formalized procedures.

Ceremony. Formalized procedures, documentation, review processes,

and metrics.

Combination. A means of acquiring knowledge by combining different

types of explicit knowledge to produce new conclusions.

Continuous test and verification. The practice of simulating a design
at every stage of development using techniques such as rapid prototyping

and hardware-in-the-loop.
Data. Unconnected facts, statistics, or statements.

Dissemination. A means of sharing knowledge by spreading newly
created knowledge within and outside an organization.

Executable specification. A model that encapsulates design require-

ments at a specific level of detail.

Explicit knowledge. Knowledge that can be codified and captured in

manuals, databases, presentations, models, and other media.

Externalization. The practice of translating tacit knowledge acquired
from others into a readily understandable form, such as a presentation

or model.

Managing Model-Based Design

Extreme programming (XP). A development methodology based
on agile principles that uses pair programming and short development
cycles, or releases, with built-in checkpoints for introducing new

requirements.
Information. Processed data.

Intangible assets. Company assets that are not physical in nature, such
as brands, customer relationships, employee knowledge and experience,
and intellectual property.

Internalization. The practice of building a mental model from explicit
knowledge, such as knowledge acquired from a presentation or a proto-

typing experiment.

Iterative and incremental development (lID). A development meth-
odology that proceeds in cycles (releases), with each cycle resulting in a

partially complete system for integration and testing.

Justification. The evaluation of a new idea, concept, or piece of infor-

mation by means of questions.

Knowledge. A pattern developed from information that can be used to

predict future trends and behaviors.

Knowledge capture and management. The practice of using models
to store all project information and transfer it to teams, customers, and

suppliers.

Knowledge-creation spiral. A model representing the way new knowl-

edge is created in an organization.

Lean development. A development methodology based on specific
principles and core values, with a focus on continuous improvement and
outlearning the competition.

Model-Based Design. A model-centric approach to the development of
control, signal processing, communications, and other dynamic systems.

Model elaboration. The iterative process of turning a low-fidelity
system model into a high-fidelity implementation.

Managing Model-Based Design

Organic organization. A decentralized organization in which all team
members participate in decision-making, and projects are coordinated by

means of dynamic negotiation.

Plant model. A model of the part of a system that needs to be

controlled.

Scrum. A methodology in which development tasks are performed by
small, self-managed teams during two-week to four-week periods known

as sprints.

Socialization. A process in which an individual acquires new knowledge
by interacting with those who already possess it.

Spiral development. A methodology in which four development
stages—requirements, design, implementation, and testing—are
completed in one-year or two-year cycles that focus on certain features
of the whole system.

System-level simulation. The practice of simulating a model of the

system to investigate system performance and component interactions.

Tacit knowledge. Subjective, experience-based knowledge, such as
cognitive skills, beliefs, mental models, and technical know-how, that

cannot easily be expressed in words.

Tangible assets. Assets that have a physical form, such as real estate,

inventory, or stock.

Task identity. A motivational technique used to ensure that each team

member takes pride in his or her work and is invested in its outcome.
Task significance. A measure of the effect of a task on others.

V-model. A development methodology comprising five steps or
phases—requirements, design, implementation, verification, and mainte-
nance—where each development step is matched with a corresponding

test phase.

Virtual prototyping. A technique that uses simulation to validate a

design before hardware is available.

Managing Model-Based Design

74

Waterfall. A development methodology comprising five steps or
phases—requirements, design, implementation, verification, and mainte-

nance—where each step must be completed before the next begins.

What-if analysis. A simulation method used to test ideas and build
knowledge about a system.

Wisdom. Context-independent understanding of basic principles

derived from knowledge.

Managing Model-Based Design

75

O
Bibliography

Ackoft, R. L., “From Data to Wisdom,” Journal of Applied Systems
Analysis, Vol. 16,1989, pp. 3-9.

Bellinger, G., “Knowledge Management—Emerging Perspectives,”
Systems Thinking, 2004, retrieved 18 February 2015 from systems-
thinking.org/kmgmt/kmgmt.htm.

Blundell, R., R. Griffith, and J. van Reenen, “Market Share, Market
Value and Innovation in a Panel of British Manufacturing Firms,”
Review of Economic Studies, Vol. 66, No. 3,1999, pp. 529-554.

Boehm, B., “A Spiral Model of Software Development and Enhance-
ment,” Computer, Vol. 21, Issue 5, May 1988, pp. 61-72.

Boehm, B., and R. Turner, Balancing Agility and Discipline: A Guide for
the Perplexed, Addison-Wesley Professional, Boston, 2004.

Cockburn, A., Agile Software Development, Addison-Wesley Professional,
Boston, 2001.

Dahlbom, B. and L. Mathiassen, Computers in Context: The Philosophy and
Practice of Systems Design, Blackwell Publishers, Cambridge, 1993.

Hackman, J., and G. Oldham, “Motivation Through the Design of Work:
Test of a Theory,” Organizational Behavior and Human Performance, Vol.
16,1976, pp. 250-279.

IABG, “V-Model Lifecycle Process Model,” IABG Ottobrunn, 1993.
Kotter, J., Leading Change, Harvard Business School Press, Boston, 1996.

Larman, C., and B. Vodde, Scaling Lean & Agile Development,
Addison-Wesley Pearson Education, Inc., 2008.

Managing Model-Based Design

76

Nonaka, I., “A Dynamic Theory of Organizational Knowledge Creation,”
Organization Science, Vol. 5,No. 1,1994, pp. 14-37.

——, “The Knowledge-Creating Company,” Harvard Business Review,
November-December 1991, pp. 96-104.

Nonaka, I., and H. Takeuchi, 7be Knowledge-Creating Company,
Oxford University Press, New York, 1995.

Poppendieck, M., and P. Poppendieck, Lean Software Development,
Addison-Wesley Professional, Boston, 2003.

Royce, W., “Managing the Development of Large Software Systems,”
Proceedings, IEEE WESCON 26, August 1970, pp. 1-9.

Sveiby, K.-E., “Kreativitet och Makt” [Creativity and Power], RPS-FK
Reprocentral, 1994.

Sveiby, K.-E., The New Organizational Wealth: Managing and Measuring
Knowledge-Based Assets, Berrett-Koehler Publishers, Inc., San Francisco,
1997.

Managing Model-Based Design

The Eight Core Concepts of
Model-Based Design

Executable specification

A model that encapsulates design requirements at a specific
level of detail

System-level simulation

The practice of simulating a model of the system to investigate
system performance and component interactions

What-if analysis

A simulation method used to test ideas and build knowledge about
a system

Model elaboration

The iterative process of turning a low-fidelity system model into a
high-fidelity implementation

Virtual prototyping

A technique that uses simulation to validate a design before
hardware is available

Continuous test and verification

The practice of simulating a design at every stage of development

Automation

The practice of using scripts and tools to perform repetitive or
error-prone manual tasks

Knowledge capture and management

The practice of using models to store all project information and to
transfer that information to teams, customers, and suppliers

Managing Model-Based Design

TECHNOLOGY & ENGINEERING

Managing Model-Based Design

In Managing Model-Based Design Roger Aarenstrup draws on a decade of experi-
ence helping engineering teams and organizations successfully adopt Model-Based
Design. Engineers will learn how to demonstrate the value of Model-Based Design
to colleagues and key decision-makers. Engineering managers will gain insight on
using Model-Based Design to help teams adapt to change, manage complexity, and
foster innovation.

“This book is the guide that gives a manager courage enough
to start the transformation!”
-Jenny Elfsberg, Director Emerging Technologies, Volvo Construction Equipment

What Organizations Are Saying About Model-Based Design

“Model-Based Design . . . enables dramatic reductions in development time and cost,
as well as seamless integration between research, development, and production.”
-Dr. Seungbum Park, Hyundai Motor Company

“We’ll use Model-Based Design from now on because it reduces risk, saves time,
lowers costs, and increases our confidence in our designs.”
-David Erhart, Stem

“Using Model-Based Design we developed a complex control system in significantly
less time than our traditional process would have required. We eliminated months
of hand-coding by generating code from our models, and we used simulations to
enable early design verification.”

-Anthony Totterdell, Alstom Grid

“The fuel system of the A380 is three to four times more complex than that of the
A340. Model-Based Design enabled us to handle a substantially more complex
project with the same size engineering team.”

-Christopher Slack, Airbus

