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Abstract—Embedded devices are suffering from an in-
creasing number of cyberattacks across all industries and 
products. This trend continues although many developers 
are already using static code analysis in addition to dy-
namic testing. In this paper we identify possible reasons for 

this trend and propose techniques to address the underly-
ing issues so that the attack resilience of embedded soft-
ware can be increased. 

Specifically, we provide guidance on (1) which vulnera-
bilities can(not) be found by static code analysis, (2) how to 

control analysis context and setup to find more vulnerabil-
ities, and (3) how to support root cause analysis and reduce 
false positives in library code. We also discuss how to antic-
ipate unforeseen vulnerabilities in software and hardware.  

Our findings are based on a study of over 60 CVEs from 

industrial and open source embedded software. Amongst 
them are the FreeRTOS vulnerabilities from 2018, of which 
approximately 80% could have been prevented with ad-
vanced use of static code analysis. 

Keywords—security, static code analysis, security test-

ing, vulnerability detection, formal verification 

I. INTRODUCTION

Embedded software is ubiquitous in our daily lives. It 
adds convenience and intelligence to a plethora of sys-
tems ranging from headphones, over Wi-Fi routers, 
smartphones, and medical devices to autonomous cars, 
commercial aircraft, and military equipment. We put into 
its hands everything from our very personal secrets, to 
our lives and health. However, precisely because of the 
powerful role in these systems, they are also interesting 
targets for hackers. Malicious misuse, information disclo-
sure, or causing their failure can result in financial dam-
age, social manipulation, and sometimes even life hazard. 
The reality of such attacks is, unfortunately, visible in re-
cent trends in cybersecurity [1], suggesting that attackers 
are very aware of the opportunities. Embedded software 
must therefore be designed to be resilient to cyberattacks 
if it shall be robust and trustworthy. 
On the other hand, software engineers and developers 

have not stagnated either. A recent survey [2] has shown 
that more than 50% of open source projects make use of 

static code analysis tools to uncover defects and increase 
robustness, and our observation is that the prevalence is 
even higher in safety-critical and commercial software. 
Static code analysis (SCA) tools can verify the source code 
more thoroughly than dynamic testing [3] by performing 
a semantic analysis instead of executing test cases. In the 
context of security, they are referred to as Static Applica-
tion Security Testing (SAST) tools. These tools are well-re-
ceived by developers since they can point out shortcom-
ings of designs as well as flawed coding styles [4]. Ad-
vanced SAST tools can precisely track data and control 
flows, and check hundreds of defect classes. Some are 
even able to prove the absence of errors with formal 
methods, which is equivalent to (the unattainable) ex-
haustive dynamic testing [5]. However, we observe that 
despite the increased use of SAST tools, the number of 
vulnerabilities reported for embedded software is still on 
the rise.  

This paper explains when SAST may miss vulnerabili-
ties and provides guidance on how to improve detection 
by advanced use such as tuning of analysis context, 
checker parametrization, contracts, and function replace-
ments. We discuss why these and other methods help to 
uncover more defects, we link them to real-world vulner-
abilities (CVEs), and we discuss which types of vulnera-
bilities evade tool capabilities. Moreover, we explain how 
developers can perform root cause analysis instead of just 
fixing symptoms. Part of this explanation is how to obtain 
partial attack paths and how to answer common ques-
tions; for example, Did I check all input data properly? Fi-
nally, we discuss the role and benefits of defensive coding 
and reduction of analysis assumptions. Both methods in-
crease the resilience against unforeseen incidents, such as 
hardware vulnerabilities, but also bring positive side ef-
fects for SAST tools. The insights presented here summa-
rize our forensic work on approximately 60 vulnerabili-
ties in industrial and open source software with the Poly-
space Static Code Analysis Tools [5]. To allow the reader to 
follow and replicate our methods, we provide examples of 
CVEs in open source software that are well-documented 
and already patched. 

Figure 1. Error call graph for CVE-2018-16603 ("FreeRTOS TCP information leak") due to out-of-bounds read (CWE-125). 
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We start with the premise that coding guidelines like 
CERT-C have already been checked, since they can spot 
bad coding patterns that impair human comprehension 
and reduce the risk of missing defects. The Polyspace 
tools [6] can also do this job and notably increase soft-
ware quality. However, checking and following coding 
guidelines is not sufficient to ensure resilience against 
cyberattacks, since there might still be dormant defects 
[4]. For example, there is no CERT-C rule that requires 
that the arguments of memcpy are consistent, which is 
however necessary to prevent, inter alia, memory corrup-
tion and information disclosure. More details are given in 
Section III.F. On the other hand, it may sometimes even be 
justified to violate coding guidelines, without necessarily 
having an impact on the security properties of the pro-
gram. A trivial example is the cast of an integer into a nar-
rower type, which is flagged by most coding standards, 
but may be a non-issue if the values of the wider type can 
be proven to be small enough. Advanced static code anal-
ysis can help to justify such violations by providing proofs 
that reduce review efforts. They also reveal vulnerabili-
ties that have bypassed the guidelines. It is therefore ad-
vanced static code analysis that is the focus of this paper, 
and in particular tools based on sound formal methods, as 
explained later. 

A. Related Work 

A general overview about common methods in security 
testing and the important role of SAST tools is given in [3]. 
The authors rate SAST as an effective method for detect-
ing programming-related vulnerabilities, with higher 
coverage and less false positives than dynamic, test-based 
methods (DAST).  
Oyetoyan et al. [4] discuss common misconceptions of 

SAST tools, specifically in the context of agile workflows. 
They argue that SAST tools do not (magically) increase se-
curity since they focus on coding guidelines and metrics, 
and that those do not imply security. We agree with this 
argument for simple SAST tools, but we also demonstrate 
that advanced tools can go well beyond just compliance 
checking, and that proper use of such tools can signifi-
cantly increase software security. 
A study of vulnerability detection capabilities on the Ju-

liet test suite has been published in [7]. The data shows 
that 27% of C/C++ vulnerabilities have been missed by all 
SAST tools, and that recall has been around only 50% 
(median). This is at the level of random guessing, as the 
authors point out. This paper picks up on this challenge 
by providing methods that increase the number of de-
tected vulnerabilities (and thereby recall), and by provid-
ing methods that improve precision. 
The authors in [8] and [9] are concerned with the diffi-

culty of reviewing results of SAST tools, and therefore 
identified common questions that developers seek to an-
swer during this process: Why is a warning shown on a 
particular line? What could be possible root causes? 
Which inputs may trigger this defect? This is the third as-
pect that we discuss in this paper. 

II. BACKGROUND: CYBERSECURITY AT CODE LEVEL 

A. Root Cause, Infection Chain, and Consequence 

Let us begin with a precise definition of “defects” in con-
text of security, following the terminology of Zeller [10]:  

1. Root cause: an initial error created by a programmer 
2. Infection: an error that was propagated by data- or 

control flow from either root cause or from a preced-
ing infection 

3. Consequence: the resulting unwanted behavior, such 
as program crash, remote code execution, etc.; this is 
often the focus of reported vulnerabilities 

An infection chain is the event chain from the root cause 
to one or more infections and eventually to the conse-
quence (Figure 1). Sometimes infection chains might 
cease and not lead to any consequences. In this paper, 
however, we focus on real vulnerabilities and therefore 
ignore this case together with non-accessible vulnerabili-
ties (potential infection chains without a root cause). 
Every remaining infection chain is therefore exploitable 
and can be considered an attack path. Whenever the loca-
tion of the root cause (and therefore the bugfix) is not 
known, we revert to the generic term defect. 

B. Attack Scenarios, Common Weaknesses, and CVE 

Cyberattacks have the goal of finding and exploiting con-
sequences that occur at the end of an attack path. Usually, 
there are many different scenarios to launch an attack, de-
pending on the window of opportunity, attack method, 
and the vulnerability that is thought to be dormant in the 
target system. However, one of the key elements in many 
attack scenarios is programming errors [11]. 
To address the well-known issue of programming er-

rors, MITRE started the Common Weakness Enumeration 
(CWE) project in 1999. It captures and categorizes known 
programming errors to better understand common secu-
rity flaws. The creation of CWE was part of the Common 
Vulnerabilities and Exposures (CVE) list, which was 
started to publish known vulnerabilities in a systematic 
way. Based on the CVEs of 2018 and 2019, MITRE has 
identified the top 25 most dangerous software weak-
nesses, with the top 10 most dangerous CWEs being [12]: 

 
# CWE NV CVSS Name 

1 *CWE-79 14% 5.8 Cross-Site Scripting 

2 CWE-787 8% 8.31 Out-of-Bounds Write 

3 CWE-20 7% 7.35 Improper Input Validation 

4 CWE-125 6% 7.13 Out-of-Bounds Read 

5 CWE-119 4% 8.08 Improper Restriction of Operations 

Within Bounds of a Memory Buffer 
6 *CWE-89 3% 8.98 SQL Injection 

7 CWE-200 5% 6.01 Exposure of Sensitive Information to 
an Unauthorized Actor 

8 CWE-416 3% 8.26 Use After Free 

9 *CWE-352 3% 8.08 Cross-Site Request Forgery (CSRF) 

10 *CWE-78 3% 8.52 OS Command Injection 

https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/78.html
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Whereas “NV” denotes the percentage of reported vulner-
abilities referring to the CWE, and “CVSS” denotes the av-
erage of the official severity score.  
As we can already see from this table, CWEs occasion-

ally point to consequences (e.g., CWE-200) rather than to 
root causes (e.g., CWE-787). This is a known problem 
which is discussed in [13]. In this paper we use CWEs to 
classify root causes, unless noted otherwise. 
The CVEs and methods shown in this paper address six 

out of 10 CWEs from this list. The remaining CWEs 
(marked *) have not been part of our forensics since they 
are atypical or rare applications for embedded systems, 
but we believe that the methods shown here can also be 
carried over to them. 

C. On Static Code Analysis 

Static code analysis tools should ideally not miss defects 
(no false negatives), but also not throw needless warnings 
(avoid false positives). This is, informally speaking, the es-
sence of the famous Decision Problem in computer sci-
ence, which states (with mathematical proof) that both 
soundness (no false negatives) and completeness (no false 
positives) are impossible to achieve simultaneously for 
meaningful formal systems [14], which also include C and 
C++ programs. Therefore, all SAST tools must either be 
unsound (miss defects) or incomplete (throw needless 
warnings). However, sophisticated tools throw only few 
warnings and miss few defects. A combination of both ap-
proaches is often useful in practice. Some tools even offer 
modes to choose between reporting only likely defects 
(low review effort, provides confidence for defect-free 
software) and reporting all defects (higher review effort, 
guarantees absence of defects in software). One such ex-
ample is the Polyspace Static Code Analysis Tools [6].  

In this paper we assume a sound static code analysis 
tool such as Polyspace Code Prover [5]. We argue that re-
silience to cyberattacks is closely related to robustness, 
which in turn depends on implementing all corner cases 
correctly. Thus, missing a defect can result in oversight of 
vulnerabilities. This, however, is not a concern with 
sound tools since they find as many potential defects as 
possible, and hence allow us to increase resilience 
through appropriate bugfixes. The methods shown here 
can also be applied with unsound tools, however, without 
any guarantee that the resilience to cyberattacks is in-
deed increased.  

III. METHODS TO UNCOVER MORE VULNERABILITIES 

This section proposes best practices to avoid tool han-
dling errors and to increase the sensitivity of SAST tools, 
both with the goal to reveal more vulnerabilities. 

A. Remove Undefined Behavior First 

Most vulnerabilities build on undefined behavior (e.g., 11 
out of the 14 FreeRTOS vulnerabilities); that is, the un-
known program behavior that results from operations 
which are not defined by the programming language 
standard and where consequently “anything can happen”, 
including memory corruption and crash. Examples are 

dereferencing a NULL pointer or accessing an array be-
yond bounds. Therefore, most SAST tools aim to identify 
such bad operations.  
However, undefined behavior is also the worst enemy 

of all SAST tools. Since, by definition, its presence means 
that the program behaves unpredictably, a sound tool has 
virtually no choice but to continue analysis under the as-
sumption that the offending value or path is blocked from 
this point onwards.  
These “blocking semantics” have two effects. First, they 

help identify problems closer to their root cause, which 
reduces debugging work. Second, they can also “hide” 
downstream defects in the code if a user chooses to ignore 
the tool warnings. Take the example of multiple out-of-
bound array accesses in a row, caused by the same bad 
index variable: Only the first violation will be reported; 
thereafter the offending path is not further considered.  
On a real target, undefined behavior can either agree 

with blocking semantics (e.g., program crash) or continue 
execution. The latter case, however, means the program 
lives on with different control flows than intended, and in 
an erroneous state. It is often this very effect that makes 
a vulnerability exploitable. Note that some SAST tools do 
not use blocking semantics. Instead, they only flag unde-
fined behavior and continue analysis with the offending 
execution path, making the additional assumption that 
there is no other effect on program behavior. This, how-
ever, is not only unsound, but also throws more warnings 
since it considers execution paths which are infeasible as 
per the language semantics.  
In summary, we urge developers to fix undefined be-

havior first, instead of suppressing or justifying such 
warnings from the tool. This can be done by proper setup 
of analysis context, as described next, or better even by 
defensive coding, as described in Section V.A. 

B. Analysis Setup 

Static analysis aims to predict the behavior of the pro-
gram on the target processor. Towards this, advanced 
SAST tools, and especially sound ones, must take into ac-
count several aspects. Failure to consider these aspects 
results in either imprecise or, worse, unsound results. 

Compiler and Target. The precise behavior of a program 
depends on the compiler, compiler settings, and proces-
sor. Therefore, a precise model of the target and toolchain 
is required to ensure that no defects are missed. Among 
others, the analysis must be set up correctly to consider: 

• Target characteristics (such as endianness, round-
ing modes, word width, etc.), 

• compiler- and implementation-defined behavior 
(such as alignment, pre-defined macros, intrinsics, 
and implicit types), and  

• behavior of the standard library (such as different 
implementations of smart pointers between gcc 
and clang and their representation in memory). 

Advanced SAST tools like Polyspace [5]therefore can 
automatically infer the correct settings by analyzing the 
build process (use of compilation databases, sniffing build 
commands). This not only ensures a correct analysis 
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setup and finds more vulnerabilities but also removes the 
burden of manual setup. In cases where build information 
is not available, users can still set up the analysis manu-
ally via a graphical user interface. 

Scope and Context. Unless whole, self-contained pro-
grams (including main and library code) are analyzed, 
some function definitions will be missing. We discuss this 
in further detail in Section F for the standard library, 
where often only header files are available but not the im-
plementation of functions such as memcpy. In such cases, 
SAST tools must work in the absence of function defini-
tions (“stubbing”) and make assumptions on their effects. 
Vice versa, if they encounter a function for which no caller 
is known, they must make assumptions on the calling con-
text. By default, sound tools must make worst-case as-
sumptions. Continuing the example of the unknown 
caller, they must assume that function parameters carry 
any value that is permitted by their type (“full range”). 
In some cases, users might have additional information 

available that can help SAST tools making better assump-
tions and thereby to obtain more precise results. Tools 
like Polyspace [5]allow to convey such information as 
Data Range Specifications (DRS). For example, it allows to 
define ranges on return values of stubbed functions, and 
to define ranges or pointer allocation properties of func-
tion parameters. However, we advocate using such mech-
anisms only when users have solid evidence that the as-
sumptions are sound. Otherwise, vulnerabilities might be 
missed due to wrong user inputs.  

 
Multitasking Model. Repeated and interrupted execu-
tion of functions may introduce additional program states 
and drastically change program behavior. For example, 
interrupts may manipulate global variables and/or ena-
ble and prohibit execution paths. Therefore, if multitask-
ing is ignored, the analysis may draw incorrect conclu-
sions about the data and control flow and eventually miss 
effects like overflows caused by repeated execution, ille-
gal pointer assignments, and many other potential vul-
nerabilities caused by incorrect synchronization (dead-
locks, partial writes). One example for this is CVE-2019-
11922 (“zstd race condition”, CWE-362). Advanced SAST 
tools like Polyspace [5] can automatically detect multi-
tasking primitives of common targets, and furthermore 
allow parametrization to support custom board support 
packages and various operating systems. 

 
Once target settings, analysis scope, and contextual as-

sumptions have been chosen, we recommend running an 
initial analysis and to focus on dead code. Precise tools 
like Polyspace [5] can identify parts of the program that 
are not reachable with the given parameters. Since un-
reachable code cannot be executed as per the program se-
mantics, it is not further analyzed. A problem occurs if the 
user-provided analysis assumptions are incorrect and 
lead to false dead code, since then vulnerabilities might be 
missed. Hence, users should first double check their anal-
ysis setup to ensure that whatever has been identified as 
dead code is indeed unused. If so, and only if the SAST tool 
is a sound one, the user might consider removing dead 

code to increase performance. However, this is beyond 
the scope of this paper and should be done only after care-
ful consideration, for it may counteract the principle of 
defensive coding (see Section V.A). Otherwise, the setup 
should be corrected accordingly (e.g., add preprocessor 
defines to make #ifdef contents reachable) to ensure that 
only truly unreachable code is classified as dead.  

C. WYCIWYG (What You Check Is What You Get) 

Another prerequisite for finding any given class of vulner-
abilities is that the SAST tool actually implements the re-
quired checkers (and that the user activates them). Even 
if a SAST tool certifies a program to be free from defects, 
the program may still contain vulnerabilities. This is 
known by some practitioners [3] but is, unfortunately, a 
regular oversight by others. The following examples illus-
trate this “WYCIWYG” principle by example (noncom-
plete list): 

• SAST tools which only check for undefined behav-
ior (see Section A) cannot conclude the absence of 
DoS vulnerabilities caused by infinite loops or re-
cursions. 

• SAST tools which do not analyze multi-tasking or 
interrupts may fail to cover some execution paths 
in the program due to lacking variable interactions, 
and therefore miss vulnerabilities (see Section B).  

• SAST tools which do not understand the semantics 
of crypto libraries cannot warn of predictable en-
tropy sources as in CVE-2015-5611 (“Jeep Hack”, 
CWE-337). 

• SAST tools which do not understand the standard 
library can miss memory management issues, or 
cannot implement checks for TOCTOU vulnerabili-
ties (see also Section F). 

Many other capabilities could be mentioned here. Ad-
vanced SAST tools should therefore not only implement 
checkers for security coding standards like CERT-C but 
also take into consideration the mentioned aspects. The 
Polyspace family of static analysis tools [6] currently co-
vers more than 280 defect classes, in addition to many 
coding standards like CERT-C(++) and MISRA-C(++). 

 
Figure 2. CVE-2018-16601 ("FreeRTOS IP DoS/Memory 
corruption") due to negative overflow (CWE-191). Enabling 

overflow checks on unsigned integers identifies the root cause.  
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D. Parametrization of Checkers and Tool Assumptions 

Sophisticated SAST tools offer numerous parametrization 
options to allow fine-tuning of check behavior. Closely re-
lated to this, they also allow selecting default assumptions 
(see also Section B). Naturally, these options can decide 
whether a vulnerability is missed. Some examples are: 

• Are environment pointers assumed unsafe? If yes, 
more defensive coding is required, but it also spots 
failure to check inputs (CWE-20). 

• Are global variables considered as untainted? If yes, 
provide reasonable initialization values (CWE-454). 

• Are overflows of unsigned types considered a de-
fect? If yes, the root cause of CVE-2018-16601 can be 
spotted (“FreeRTOS DoS”, CWE-191,, Figure 2). 

• Are sub-normal floating-point numbers considered 
a defect? If yes, some timing side-channels like CVE-
2017-5407 (“information disclosure”, no CWE exists 
for root cause) can be spotted.  

The Polyspace tools [6] offer the listed parameters 
among many others, and we recommend making use of 
them to detect a greater number of vulnerabilities. 

E. Assertions and Contracts 

Another effective method to catch more vulnerabilities is 
to encode assumptions or design intentions in the sources 
via assertions. Consider the example in Figure 4 from 
CVE-2019-13223 (“stb-ogg DoS”, CWE-617): The devel-
oper expects that the variables entries and dim have a cer-
tain relation, and has captured this assumption as as-
sert(…). Dynamic testing could in principle exercise this 
claim. However, the offending state has not been found by 
DAST, resulting in this CVE. A similar case is CVE-2019-
13219 (“stb-ogg DoS”, CWE-476). A sound SAST tool like 
Polyspace [5], on the other hand, can prove or disprove 
this claim as shown, and warn the developer that this im-
plementation deviates from the intent, and help to protect 
from this DoS vulnerability. 
Moreover, assertions can be used to implement the 

well-known concept of contracts, like pre- and postcondi-
tions. For example, an assertion at the beginning of the 
function (precondition) can be used to capture allowed 
combinations of arguments. As an effect, SAST can spot 
incorrect use of a function. Vice versa, and like in this ex-
ample, we can also document the intended state on com-
pletion of a function (postcondition), which enables SAST 
to prove or disprove that the implementation of the func-
tion itself is following intentions. 

Arguably, in some cases it might be better to sacrifice 
well-defined behavior for availability of service. In such a 
case, it can be justified to turn off assertions for the de-
ployed system, yet still benefit from assertions with SAST. 

F. Customizing and Mapping of stdlib Replacements 

By default, sound SAST tools must perform stubbing 
when not all source code is available, as discussed in Sec-
tion B. However, stubbing can lead to oversight of vulner-
abilities, too. Consider the function pvPortMalloc of Fre-
eRTOS, which is used similarly to malloc from the C stand-
ard library. If a SAST tool does not “know” its meaning, it 
a) cannot conclude that a new memory region is allocated 
nor the size thereof, b) cannot warn of problems with dy-
namic memory management, such as error checking and 
initialization problems, and c) cannot track out-of-bounds 
memory access errors.  
Another example is that developers might want to re-

implement a target-specific math function as a replace-
ment for a slower standard library function. SAST tools 
can only check for domain errors (like passing negative 
value to a sqrt replacement) if this equivalence is known. 
If there is a one-to-one mapping from the original func-
tion signature to the custom one, an appropriate macro 
definition might be enough (but still must be provided). 
In contrast, if arguments are switched or added, a map-
ping between the custom function and the replaced li-
brary function must be established by other means. In the 
case of Polyspace, an XML file conveys such relations. 
Mapping and replacement capabilities are especially 

important to detect vulnerabilities around memory man-
agement. In the case of the FreeRTOS vulnerabilities, fail-
ure to consider replacements would have caused over-
sight of seven out of the 14 CVEs.  

G. What Do We Still Miss? 

In extension to the WYCIWYG principle, some vulnerabil-
ities are essentially invisible to SAST tools, regardless of 
setup, implemented checkers, or tool precision. It is im-
portant to understand this limitation so that security ex-
perts can focus their efforts on exercising such cases with 

 
Figure 4. CVE-2019-13223 ("stb-ogg DoS") due to failing assert 
(CWE-617) predicted by SAST, including offending data. Asser-
tions and contracts are effective for encoding assumptions, but 
also potential vulnerabilities. 

 
 

 
Figure 3. CVE-2014-0160 ("SSL heartbleed", CWE-119) with 
complete attack path. 

 



6 

other methods, like penetration testing. Under the follow-
ing circumstances, vulnerabilities cannot be detected by a 
SAST tool (non-exhaustive list): 

Incorrect functional properties. The DNS poisoning of 
vulnerability of FreeRTOS (CVE-2018-16598, CWE-441) 
was defect-free from the tool’s point of view. However, 
the logic deciding which DNS queries should be stored in 
cache did allow the eviction of useful cache contents for 
garbage data. As an effect, the cache became practically 
useless, and system performance dropped below accepta-
ble limits. The consequence is Denial of Service. Clearly, 
such defects where the knowledge of correctness is be-
yond the source code are usually impossible to detect for 
SAST tools. Similar undetectable cases are incorrect for-
mation of network packets where length fields are incon-
sistent with payload length (CVE-2018-16527, “Free-
RTOS leak”, conseq. CWE-200) or, in general, any imple-
mentation that deviates from a specification that is not 
part of the source code. 

Temporal properties. One type of vulnerability is timing 
side-channels. Since SAST tools do not perform timing 
analysis, such defects usually cannot be detected. An ex-
ception is CVE-2017-5407 (“information disclosure”), as 
discussed in Section D. 

Insufficient analysis scope. Consider the example of a 
program forming a NULL pointer. Since this is not a de-
fect, SAST tools will not report it. However, if this pointer 
is later dereferenced in another part of the program that 
is not part of the analysis, a DoS vulnerability has been 
missed. This demonstrates a common challenge with li-
brary code like FreeRTOS (CVE-2018-16522, “DoS/RCE”, 
CWE-665) and is another reason to use contracts (see 
Section E) to ensure the library is implemented correctly. 

All the above limitations also apply to DAST tools; 
therefore, such vulnerabilities may go undetected. Never-
theless, they shall be addressed. We have already dis-
cussed how assertions and contracts can be a remedy, al-
leviating some of these fundamental limitations. Unfortu-
nately, there are practical limits to what can be expressed 
in contracts. For example, temporal properties are mostly 
beyond the scope of assertions. We therefore recommend 
identifying all inexpressible security properties as part of 
the asset and threat analysis or the cybersecurity concept, 
where such claims usually have to be documented and 
verified by other means like penetration testing [15]. 

IV. METHODS TO SUPPORT ROOT CAUSE ANALYSIS 

As we have seen, findings may point to consequences, ra-
ther than to root causes. This can not only make it tough 
to comprehend tool warnings, but in some cases they can 
be confounded with false positives and subsequently ig-
nored, leading to oversight of vulnerabilities [8]. What de-
velopers ultimately need is to see the root cause of iden-
tified vulnerabilities to answer their most frequent ques-
tions: Is it a real issue? How can it happen? How can I fix 
it? [9]. In this section, we show how to help developers 

better understand findings, assess attack packs, and local-
ize design errors before infection chains propagate 
through the program. 

A. Leverage Tool Capabilities 

The perhaps most useful method for root cause analysis 
is to use SAST tools that can provide contextual infor-
mation for failed checks; for example (non-complete list): 

• Call context: Which caller provides offending input 
that cause a vulnerability (context sensitivity)? 

• Control flow: Which decisions have been taken to get 
here (path sensitivity)? 

• Variable values: What are possible values of array-
indexing variables (CWE-787, CWE-125)? Are varia-
bles always initialized before use (CWE-665)? 

• Pointer analysis: Are they initialized? Where do they 
point to, and how large are the underlying memory 
regions (CWE-119)? 

• Taint analysis: Is a function using potentially malign 
user inputs without prior sanity checking (CWE-20)?  

• Accesses of globals: Where are they used and how 
(read/write)? Are there possible race conditions? 

More sophisticated SAST tools like Polyspace [6] com-
pute event traces, which summarize all this information in 
a sequence of steps. Users can interactively walk through 
the sequence, inspect variables and pointers, track con-
trol flow decisions (see Figure 3 and Figure 5), and 
thereby truly comprehend why a tool warning is emitted 
for a specific operation in the code. Referring to our initial 
nomenclature, event traces are a partial representation of 
the infection chain, and therefore, an attack path can often 
be derived from them without much effort. 

 
Figure 5. CVE-2018-16602 ("FreeRTOS DHCP leak", CWE-125) 
with partial attack path. 
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However, we observe that such capabilities of SAST 
tools are often ignored in automated CI/CD setups, forc-
ing developers to invest an unreasonable amount of time 
to reconstruct information from logfiles or general-pur-
pose dashboards. Therefore, we recommend exposing re-
view interfaces of SAST tools to users for results drill-
down, and to consider replacing SAST tools that do not 
have interactive capabilities. This helps addressing typi-
cal questions during results review, and often can dra-
matically speed up the debugging and resolution process. 

B. Contracts and Assertions 

As shown before, contracts and assertions are an effective 
way to spot deviations from the intended behavior. How-
ever, they also simplify root cause analysis by acting as 
barriers for the silent propagation of infection chains. Ad-
ditionally, assertions are useful to “test” knowledge of the 
SAST tool which may not be displayed explicitly. 

As an example, consider CVE-2018-16522 (“FreeRTOS 
DoS/RCE”, CWE-665) shown in Figure 6: This is the 
SOCKETS_Close function of FreeRTOS, which is called by 
userland code. Therefore, the contents of pxContext could 
be anything. The analysis has found that the dereference 
in line 114 is potentially unsafe, but there is no way to fix 
it at this code location. It might be justified to provide con-
textual assumptions, as discussed in Section III.B. How-
ever, we must ensure that such assumptions are indeed 
true; that is, analyze whether the code that sets up the 
context is indeed guaranteeing them. Towards this, a 
postcondition for SOCKETS_SetSockOpt would be the ap-
propriate method and spot the problem at the root cause, 
rather than the late and unfixable consequence: 

 
This is a SAST-only contract that includes an “is-initial-

ized” check when the i-th array element is accessed. The 
marked index operator is indeed faulty here (highlighted 
orange in Polyspace), indicating that on return of 
SOCKET_SetSockOpt initialization may be incomplete. 
As mentioned before, contracts and assertions have the 

additional beneficial that they can be exercised through 
dynamic testing. This particular CVE, however, is difficult 
to trigger since both the number of protocols must exceed 
one and the attacker must exhaust the memory on the tar-
get system. This is a good example that showing the supe-
rior effectiveness of SAST over DAST mentioned in [3]. 

V. INCREASING RESILIENCE TO UNKNOWNS 

With the methods discussed so far, 11 out of 14 FreeRTOS 
CVEs could be found. This last section proposes two ag-
gressive methods that can increase resilience further to 
maintain an operational system even if some potential 
hardware or software vulnerabilities remain undetected. 

A. Defensive Coding 

Defensive programming or coding practices explicitly 
take into consideration unforeseen circumstances as 
means to increase robustness and resilience of the soft-
ware. In practice, this is done by extensive error checking 
of program states, call parameters, and return values. 
Note that this might have a negative impact on perfor-
mance and may be identified as dead code (see Section 
III.B), which is, however, not the focus of this paper. 
Defensive coding brings two benefits for our goal of in-

creasing resilience: (1) As opposed to contracts, which 
may still be violated, defensive coding introduces real ro-
bustness. Infection chains cease through defensive cod-
ing, which leads to higher resilience even if analysis as-
sumptions are broken during operation. This is, for exam-
ple, the case when parts of the system are compromised 
by a hacker. Note that compiler flags might be necessary 
to avoid optimizers from removing such code. (2) Defen-
sive code acts as a “filter” for SAST tools and improves 
precision. Since sound tools must consider all program 
states permissible by the analysis context, they often yield 
more warnings than developers may agree with (remark: 
often unrightfully so). Precise SAST tools, however, bene-
fit from defensive coding by recognizing that offensive 
values do not reach critical parts. 
As tip for readers who utilize Model-Based Design to 

generate code from graphically designed algorithms, we 
like to point out that advanced code generators are able 
to generate defensive code by merely setting options cor-
rectly, as is the case with Embedded Coder [16]. 

B. Minimize Contextual Assumptions 

Precisely providing analysis assumptions on the calling 
context  may result in fewer warnings (see Section III.B), 
but might also open the door to attacks if assumptions are 
violated, as discussed earlier. If a hacker can manipulate 
one part of a program such that assumptions are violated 
for another part, a chain effect may occur after which the 
program follows execution paths that have never been 
analyzed, wreaking havoc (e.g., through a NOP slide).  
Therefore, we argue that for resilience, assumptions 

should be avoided as far as possible already while the pro-
gram is still under development. This reinforces the need 
for defensive coding and hence fosters resilience. For an 
already developed software, assumptions should be grad-
ually removed; e.g.: 

• Omitting contextual code (such as test harnesses 
or main functions) for analysis, 

• enforcing of stubbing for individual functions, or 
• removing range constraints or information about 

global variables. 

 
Figure 6. CVE-2018-16522 ("FreeRTOS DoS/RCE") due to im-
proper initialization (CWE-665) at the location of consequence. 

A bugfix is not possible here. Contracts identify the root cause. 
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Naturally, this results in more findings and hence re-
veals potential vulnerabilities that have been unreachable 
before. We again discourage simply suppressing them, 
since in our experience this is a major reason for missed 
vulnerabilities. Instead, fixes should be applied until SAST 
is able to prove freedom from (checked) defects.  
Moreover, the reduction of contextual assumptions 

brings two immediate benefits for SAST tools:  

1. Speedup of analysis: In absence of contextual as-
sumptions, analysis can be performed on smaller 
program partitions without further loss of preci-
sion, which reduces analysis time. 

2. Increase of precision: Smaller program partitions
imply less complexity, which allows some tools to
omit otherwise necessary overapproximation.
Moreover, precision is further increased by the “fil-
tering effect”, as explained earlier.

With Polyspace [5], the option “-unit-by-unit” has the 
effect of ignoring cross-unit analysis context and thus will 
reap the benefits listed above. Analysis context can be fur-
ther reduced by avoiding or undoing what was discussed 
in Section III.B. The result will be a software that is resili-
ent against unforeseen vulnerabilities in the system, 
which, as we have seen in recent history, can also stem 
from hardware. The presented methods to increase resil-
ience should therefore not be considered optional, but ra-
ther as means to anticipate of the imperfection in today’s 
complex embedded systems. 

VI. CONCLUDING REMARKS

We have discussed how SAST tools can spot many vulner-
abilities and how their effectiveness can be improved 
through advanced use. First, undefined behavior should 
be addressed, as it can hide vulnerabilities. Next, the anal-
ysis setup and tool configuration should be chosen care-
fully. We have covered aspects of scope and contextual as-
sumptions (and their dangers), as well as checker config-
uration and function replacements. With this, SAST can 
detect more than DAST in many cases, confirming its im-
portant role for cybersecurity.  
However, there are vulnerabilities which neither DAST 

nor SAST can detect, namely those requiring knowledge 
or context beyond the sources (e.g., the meaning of data 
fields in network packets or incorrect logic of algorithms), 
those that have their consequences beyond analysis 
scope (e.g., analyzing a library but not its correct use), as 
well as vulnerabilities related to timing properties. 
Proper root cause analysis of the tool’s findings is an-

other important aspect, since otherwise findings might be 
unrightfully suppressed, leading to missed vulnerabili-
ties, too. We have shown how sophisticated SAST tools 
support this process and advocate that developers should 
get access to appropriate review interfaces. 
Finally, we have proposed methods to handle unfore-

seen circumstances, namely defensive coding as well as 
contracts, and explained how they can benefit analysis 
precision, reduce the analysis time, and further increase 
the resilience to cyberattacks. 
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