Typically weighing less than 10 pounds (4.5 kilograms), nanosatellites are more than 100 times lighter than traditional satellites and can be produced at about 1% of the cost. To meet size and budgetary constraints, most nanosatellites are built either without attitude control systems or with rudimentary systems that make them unsuitable for applications that require precise orientation.
Graduate students and engineers at the Space Flight Laboratory (SFL) at the University of Toronto Institute for Aerospace Studies (UTIAS) design, analyze, and simulate attitude control systems that precisely control nanosatellites on orbit, including Canadian Advanced Nanospace eXperiment 2 (CanX-2) and CanX-6.
MathWorks tools are integral to SFL’s control system design process. They also enable graduate students to gain practical experience on real-world space missions.
“We rely on these products to build high-fidelity models of sensors, actuators, and satellite mass properties; develop control algorithms; and simulate the overall control system to predict performance,” says Dr. Robert Zee, director of the Space Flight Laboratory. “Our nanosatellites are among the first in the world that can maintain a precise orientation to within 1 degree. With this level of precision, the satellites can be used on real earth observation and astronomical missions.”