The natural perils experts of Swiss Re pooled their years of experience in MathWorks tools to create the prototype in just eight months.
“MATLAB is a much faster environment to develop and test models—especially for non-IT developers like myself,” says Lemcke. “It is the perfect link between Excel and overly complex programming languages like C++ or Java, so it was the natural choice for us.”
Swiss Re first combined the models and then quickly imported all the historical data using the importing capabilities of MATLAB®. They then focused on developing the prototype by gathering requirements and feedback from the underwriters.
“Combining the models was purely experimental,” says Lemcke. “It was really learning by doing, which is the great thing about MATLAB. If you see that something isn’t working, you can refine and optimize for improved speed and data processing.”
Because they had data for only about 1000 actual storms in the North Atlantic, Swiss Re used Monte Carlo techniques in MATLAB to generate artificial tracks that gave the physical boundaries of possible future storms. The team validated the results by comparing this artificial data with historical data based on loss estimates.
The team used Mapping Toolbox™ to convert the geographical data, handle projections, and call maps and terrain data.
Finally, their IT department rewrote the prototype as a Java application. More than 50 underwriters—from Hong Kong to South Africa to the U.S.—now use the application to calculate loss estimates for earthquakes and tropical cyclones. They enter as much information as possible on a specific type of natural disaster, import portfolio client data, and run an analysis that calculates the potential loss.