
1 MATLAB Digest www.mathworks.com

Using a fault-tolerant fuel system model as
an example, this article describes tools and a
workflow for converting models from float-
ing point to fixed point for production code
generation. Topics covered include:

• Preparing the model data

• Analyzing, refining, and optimizing the
fixed-point scaling

• Generating optimized code

• Verifying and validating the code

The approach described here uses two
tools in Simulink Fixed Point™: Fixed-Point
Advisor and Fixed-Point Tool.

Preparing the Model And Data
For Conversion
The fault-tolerant fuel system model con-
tains three main components: an ECU con-
troller, a plant for the engine gas dynamics,

and several sensors. We concentrate on the
ECU controller for fixed-point modeling,
conversion, and code generation.

Some preparation tasks are required even
if the code generated from the ECU is to

By Bill Chou and Tom Erkkinen

An essential step in embedded software development, floating- to fixed-point

conversion can be tedious, labor-intensive, and error-prone. System engineers

frequently design algorithms in floating-point math, usually double-precision.

This format represents the ideal algorithm behavior but takes little account of

the algorithm’s final realization in production software and hardware. Software

engineers and suppliers in mass production environments often need to convert

these algorithms to fixed-point math for their integer-only hardware. As a result,

multiple iterations between system and software engineers are often required.

Converting Models from Floating Point to
Fixed Point for Production Code Generation

MATLAB Digest

be deployed on a floating-point embedded
micro-processor. Fixed-Point Advisor is
an interactive tool designed to facilitate
model preparation (Figure 1).

Products Used

■ Simulink®

■ Stateflow®

■ Fixed-Point Toolbox™

■ Simulink Fixed Point™

■ Simulink Verification and Validation™

■ Real-Time Workshop®

■ Real-Time Workshop Embedded Coder™

■ Stateflow Coder™

Figure 1. Model preparation using Fixed-Point Advisor.

2 MATLAB Digest www.mathworks.com

Using Fixed-Point Advisor, we will com-
plete the following steps:

• Replace unsupported blocks

• Set up signal logging and create initial
reference data

• Specify target hardware characteristics

• Prepare for and perform data typing
and scaling

• Check model suitability for production
code deployment

Replacing Unsupported Blocks
We begin by replacing blocks that do not sup-
port fixed-point data types—including re-
placing continuous-time with discrete-time
blocks. We can use rate transition blocks
to convert the continuous-time signals
to discrete-time signals sampled at 10ms, as
required by the controller. At this stage, we
must also analyze the effect of sampling and
quantization on system performance and
stability. Simulink® provides a list of data
types supported by each block (Figure 2).
Most blocks support fixed-point data types.
Stateflow® fully supports fixed point.

If your model includes Embedded
MATLAB™ functions, you can choose from

hundreds of functions that support fixed
point, including those typically used in em-
bedded algorithm design.

Setting Up Signal Logging And
Creating Initial Reference Data
We log signals of interest from simulation
for use in equivalence comparisons with
the fixed-point model and for code gener-
ation. Typically, input and output signals
are logged. Fixed-Point Advisor provides
a list of additional signals that it might be
helpful to log.

To make signal logging easier, we can log
all signals or select signals, including un-
named ones, from portions of the model

subsystem hierarchy (Figure 3). Once we
have configured the signals to be logged, we
create and store the reference data using the
floating-point model.

Specifying Target Hardware
Characteristics
Model simulation behavior and code gen-
eration outputs are determined by the
characteristics of the target hardware.
Model Advisor reminds us to specify the
correct word lengths for char, int, long,
and other attributes unique to a particular
embedded microprocessor so as to avoid
producing incorrect results from simula-
tion or code generation.

Figure 2. Block data type
support table in Simulink.

Figure 3. Logging fixed-point data, including unnamed signals.

3 MATLAB Digest www.mathworks.com

Preparing For Data Typing
And Scaling
Data type inheritance and other propa-
gation settings affect the time needed to
convert the model from floating to fixed
point. During the initial design phase, en-
gineers frequently use inherited data type
propagation to speed up prototyping and to
quickly iterate several designs. As the proj-
ect approaches production, they fine-tune
and specify individual data types and scal-
ing to optimize fixed-point results.

Fixed-Point Advisor facilitates this work-
flow by automating the following steps:

• Removing output data type inheritance
to help avoid data type propagation
conflicts

• Relaxing input data type settings or
constraints that might lead to data-type
propagation errors

• Verifying that state charts have strong
data typing with Simulink

We must specify design minimum and
maximum values for inport blocks. We can
also specify these values for other block out-
puts and parameters.

Performing Initial Data Typing And
Scaling
Using Fixed-Point Advisor, we specify ini-
tial data typing and scaling for blocks.

Based on our initial input and direction,
Fixed-Point Advisor proposes data typing
and initial scaling for inport blocks, con-
stants, blocks that do not fall into either
category, parameters, and blocks that use
intermediate data types, such as the Sum
and Product blocks. Fixed-Point Advisor

uses either the design or simulation mini-
mum and maximum from the floating-
point data to propose the initial fixed-point
scaling. The tool reports scaling conflicts
and suggests ways to resolve them. It then
checks for numerical errors and analyzes
the logged signals.

An initially scaled fixed-point model is
then produced, together with plots comparing
the floating-to-fixed-point model results.

Checking the Model’s Suitability For
Production Code Deployment
Using Fixed-Point Advisor, we run final
checks to determine the model’s suitability
for production code deployment (Figure 4).
These include:

• Disabling signal logging to avoid declar-
ing extra signal memory in the gener-
ated code

• Identifying blocks that generate expen-
sive saturation and rounding code

• Identifying questionable fixed-point
operations—for example, ensuring that
lookup tables are spaced so as to maxi-
mize code efficiency

Analyzing, Refining, and
Optimizing the Fixed-Point
Scaling
Using the Fixed-Point Tool’s automatic
scaling function, we analyze, refine, and
optimize scaling for relevant blocks in the
model that we initially scaled using Fixed-
Point Advisor.

We use the data type override feature
to collect the dynamic range of signals in
double precision. The Fixed-Point Tool uses
this information to propose a more suitable
fixed-point scaling for each block, based
on the number of available bits. Individual
blocks can be locked down to prevent them
from being modified by the tool. We can
then use automatic scaling with individu-
ally scaled blocks and accept or reject the
proposed scaling for each signal.

With the Fixed-Point Tool we can use one
model for both the floating- and fixed-point
designs, reducing the need to maintain sep-
arate models during design iterations.

Figure 4. Identifying issues that could lead to the generation of inefficient code.

4 MATLAB Digest www.mathworks.com

Comparison plots provide a quick and
easy way to analyze and contrast the behav-
ior of the fixed- and floating-point designs.
The Fixed-Point Tool records the number
of overflows and saturations that occurred
in the simulation. Figure 5 shows the tool
and its proposed scaling for the Fuel System
model. Further analysis showed the output
of the Sum block saturated during simula-
tion. The automatic scaler proposed chang-
ing the fraction length from 11 to 10 bits, in-
creasing the output dynamic range to avoid
saturation and retain maximum precision.
Once we have made this change, the results
match closely (Figure 6), and we are ready
for code generation.

Generating Optimized Code
Before generating code for the system,
we run checks in Simulink using Model
Advisor. Some checks, such as “identify
questionable fixed-point operations” and
“check hardware implementation,” are cru-
cial for fixed-point development. Additional
model standards checks are available in
Simulink Verification and Validation™, in-
cluding checks based on the MAAB guide-
lines and safety-related standards such as
IEC 61508 and DO-178B.

To generate code from an optimized
design, we must first select a deployment
target. Options range from the default
ANSI/ISO C/C++ to a target with proces-

sor-optimized code. We could also target
middleware or abstraction layers, such
as AUTOSAR.

For ANSI/ISO C code generation, we se-
lect the Embedded Real-Time Target (ERT)
option in Real-Time Workshop Embedded
Coder™, which is optimized for fixed-point
code (Figure 7). Other than word sizes and
other target characteristic settings, this
code is portable and can be deployed on any
target with the specified word sizes.

There are several capabilities for gener-
ating target-optimized code. The first is to
have the generated code call an existing C
function at the appropriate point within
the algorithm, typically by using the Legacy
Code Tool in Simulink.

Figure 6. Comparison with original floating-point results. Figure 7. ANSI-C code optimized for a fixed-point target using
Real-Time Workshop Embedded Coder.

Figure 5. Automated scaling using the Fixed-Point Tool.

5 MATLAB Digest www.mathworks.com

A second capability is to automatically
replace generated math functions, math
operators, and memory-allocation func-
tions such as memcpy with target-specific
versions. This is done using Target Func-
tion Libraries (TFL), tables mapping default
functions and operators to their target-spe-
cific equivalents. Several pre-built TFLs are
available (Figure 8). In addition, end users
can create customized tables for their own
targets. The TFL is then available as a code-
generation setting.

Once a TFL is selected, the generated
code incorporates the replacement items.
One advantage of this option is that you can
quickly generate optimized code for several
different targets from the same model sim-
ply by changing the TFL. Figure 9 compares
ANSI-C- and TriCore® optimized code for
fixed-point addition of 32-bit integers with
saturation logic. The code is smaller and the
execution time dramatically reduced—by a
factor of 17.

Verifying and Validating the
Production Code
The reference data collected from the float-
ing-point behavioral model can be reused
for equivalence testing throughout the de-
velopment process. We first use the data to
compare the results of the initial fixed-point
design to the original floating-point model.
We do not need to generate code just to
compare the model results because bit-ac-
curate fixed-point simulation is supported
by Simulink Fixed Point.

5 MATLAB Digest

int32_T_add_s32_s32_s32_sat(int32_T a, int32_T b)

{

 int32_T tmp;

 tmp = a+b;

 if ((a < 0) && (b < 0) && (tmp >= 0))

 {

 tmp = MIN_ int32_ T;

 } elseif ((a > 0) && (b > 0) && (tmp <= 0))

 {

 tmp = MAX_int32_T;

 }

 return tmp;

}

int32_Tadd_s32_s32_s32_sat(int32_T a, int32_T b)

{

 return (_sat int)a+b;

}

Figure 9. Fixed-point code optimized for ANSI-C (top) and TriCore (bottom) using TFL.

Figure 8. Selecting optimized Target Function Libraries.

6 MATLAB Digest www.mathworks.com

Resources

visit
www.mathworks.com

technical support
www.mathworks.com/support

online user community
www.mathworks.com/matlabcentral

Demos
www.mathworks.com/demos

training services
www.mathworks.com/training

thirD-party proDucts
anD services
www.mathworks.com/connections

Worldwide contacts
www.mathworks.com/contact

e-mail
info@mathworks.com

80368V00 11/08

© 2008 The MathWorks, Inc. MATLAB and Simulink
are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional
trademarks. Other product or brand names may be trade-
marks or registered trademarks of their respective holders.

For More Information

■ Using Diagnostics to Improve Your

Simulink Model
www.mathworks.com/diagnostics

■ Fixed-Point Modeling and Code
Generation Tips for Simulink 7
(R2008a)
www.mathworks.com/simulink7-tips

We test the code on the target processor
using processor-in-the-loop (PIL) testing
(Figure 10). PIL cosimulates the object
code on an embedded hardware or in-
struction set simulator with the original
plant model or test harness in Simulink.
MathWorks link products, such as Em-
bedded IDE Link™ MU (for Green Hills®
MULTI®), automate PIL testing using third-
party integrated development environments
(IDEs). It is possible to run PIL testing on
processors supported by these IDEs, such as
Freescale™ MPC 5500.

Another way to verify the code is to use
Polyspace™ products, which formally ana-
lyze code to identify defects such as fixed-
point overflow, division-by-zero, and array
out-of-bounds.

Figure 10. PIL testing. The scope (right) shows no difference between the
signal output from the model and the generated object code using the
PIL block.

Bit-accurate fixed-point simulation helps
you model designs within the Simulink
environment. Tools provided by Simulink
Fixed Point let you automate time-con-
suming parts of the fixed-point conver-
sion workflow and explore designs to fur-
ther refine the fixed-point performance.
Real-Time Workshop Embedded Coder
provides an automated path to production
code deployment. ■

