

Trip Optimizer

Development of a Driver Assistance System for Locomotives Using MATLAB

8 May 2017

MathWorks Automotive Conference | May 9th 2017 GE Proprietary

- 1. Trip Optimizer Overview
- 2. Trip Optimizer and MATLAB
- 3. Integrating an external optimization library into MATLAB Code Generation Toolset

Trip Optimizer Overview

GE's Trip Optimizer "Fuel conscious cruise control for trains"

Train and driver variations result in:

- Less than optimal fuel use
- High emissions
- Trip variations
- Wear and tear

Trip Optimizer:

- Looks over the entire route for fuel savings opportunities
- Then controls the throttle to the plan
 - Saves fuel
 - Reduces emissions
 - Reduces equipment wear and tear
 - Consistent trips improve scheduling

Trip Optimizer Deployment/Operation

- 8,000 systems installed world wide
- 60,000 miles of mapped track
- 216M miles of auto operation
- 73M miles of auto in 2016
- 1.7M auto miles per week
- 142,000 gallons of diesel fuel saved per week

Trip Optimizer and MATLAB

Converging Technologies

- Research and development into Trip Optimizer began close to the time MathWorks began rolling out automatic code generation from Simulink
- Trip Optimizer team leveraged this technology to quickly produce proof of concept simulations
- Automatic code generation for embedded targets allowed accelerated transition from simulation environment to on locomotive demos
- Simulink and MATLAB now embedded in the core elements of the product

Trip Optimizer Block Diagram

GE)

Trer	onlective	Tur _hr	THE THE TRA	muz riuri	Ig(ry/ a	.ipna_uu aip	na_pr is
, Ø	1.6109693e+001	1.12e+001	5.28e-001	0.0 0.00e+	- 000	0.00e+000	0.00e+00
0 1 0c -	1.7410406e+001	7.49e-001	2.25e+001	-0.3 7.97e-	-001 -	3.19e-001	1.00e+00
ыг 1 01 2 01 -	1.8001613e+001	7.52e-003	4.96e+000	-0.3 5.60e-	-002 2.	0 9.97e-001	1.00e+00
oc - 3 61 1	1.71 Integrati	ng an Exte	nal Optimiz	zation Librar	y into the	e MATLAB	1.00e+00
97 J 4 01 J	1.69	C	ode Genera	ation Toolset	:		1.00e+00
ยก 1 ดเ 5	1.7003411e+001	2.16e-002	8.42e-003	-2.9 7.03e-	-002 -	9.68e-001	1.00e+00
6 6 61	1.7013974e+001	2.03e-004	8.65e-005	-4.5 6.22e-	-003 -	1.00e+000	1.00e+00
ยก 1 ค. 7	1.7014017e+001	2.76e-007	2.18e-007	-10.3 1.43e-	-004 -	9.99e-001	1.00e+00
0h 1 0h 1	1.7014017e+001	2.13e-014	2.29e-014	-11.0 1.04e-	-007 -	1.00e+000	1.00e+00
Number of Iterations: 8							
Objec Dual Const Compi Overa	tive infeasibility. traint violation lementarity all NLP error	1. 2. 1. 2. 1. 1. 1.	(scal 20140171402 29281013146 13162820728 20239673332 20239673332	ed) 24134e+001 33036e-014 03006e-014 75279e-011 75279e-011	1.70140 2.29281 2.13162 1.00239 1.00239	(unscaled) 171402241340 013146330360 820728030060 673332752790 673332752790	e+001 e-014 e-014 e-014 e-011 e-011

Trip Optimizer Planner

- Fuel optimal plan generated for entire route at time of trip initialization
- Trip plan adjusted to account for changes in conditions along the route
- Plan speed is reference for speed regulator
- Plan throttle is 100% feed forward term on speed regulator output

Why Integration?

YE)

Trip Optimizer: Development of a Driver Assistance System for 8 May 2017 Locomotives Using MATLAB

GE Proprietary

The Optimization Library C++ Interface

SmartPtr<ProblemDefinition> my_problem = new MyProblemDefinition();

SmartPtr<OptimizationApplication> app = ApplicationFactory();

app->Initialize();

app->Optimize(my_problem);

How We Did It – ceval + minGW + addLinkObjects

```
function [ProfileOut, errCode, cpuTime, niters] = CallOpt_ceval(OptSpec, Mesh, espec, ProfileOut)
[OptData, Constants] = PopulateInitData_ceval(OptSpec, Mesh, espec, ProfileOut);
x = zeros(1, OptData.nvars);
niters = int32(0);
errCode = int32(0);
cpuTime = double(0);
coder.cinclude('ceval_optimizer.h');
coder.ceval('ceval_optimizer', coder.rref(OptData), coder.wref(x), coder.wref(errCode), coder.wref(niters), coder.wref(cpuTime));
ProfileOut = Post_Process_ceval(Mesh, Constants, x, ProfileOut);
end
```

coder.updateBuildInfo('addLinkObjects','liboptimizer.a',ipoptLibPath,'',true,true); coder.updateBuildInfo('addLinkObjects','libgfortran.a',mingwLibPath,'',true,true); coder.updateBuildInfo('addLinkObjects','libquadmath.a',mingwLibPath,'',true,true); coder.updateBuildInfo('addLinkObjects','libstdc++.a',mingwLibPath,'',true,true);

Planner - Improved Development Lifecycle

- Each time the model is run on the target all inputs are written to a text file which can be read into MATLAB to recreate the scenario exactly
- Failures from field can be brought back to MATLAB environment for debugging/algorithm enhancement

Conclusions

- Integrating external code into code generation process can enable parity between MATLAB development environment and embedded execution target
- Increased productivity Development and debugging
- Defects found earlier in life cycle

