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— « Al wafers moving though a lithocluster get measured with TWINSCAN metrology Slied
« Some wafers leaving the lithocluster get measured with Integrated Metrology
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— + Our study explores the use of a regression based machine learning Side
technique, known as “function approximation” to predict overlay

behavior for all of the wafers within alot @ o & o o o o e e e e e e e e e = =
All Wafers have TWINSCAN
Metrology (alignment, leveling)

Wafers without
Wafers measured || Integrated Metrology
with Integrated
Metrology

r
I
i
[
I
i
b
!
I
l
i

TWINSCAN

Resist

Develop

Exposure Metrology
i Integrated Metrology



5 Outline ASML

——
=

* Introduction

« How the function works

« Data separation into Training and Testing groups
 Training with Bayesian Automated Regularization

« Prediction Vs. Measured Overlay as regression plots
* Precision of Trained Function as a vector map

* Results

« Conclusion



@ How the function works

~+ Function input comes from TWINSCAN metrology & context;

Input

Wafer Alignment metrology

1 for all colors (NIR, FIR, red, green)
» Residuals with respect to color &
model used
« Wafer quality

2 | Wafer Leveling metrology

TWINSCAN Context

Function f:
3 inputs
1 output

3 * Chuck number
+ Field position
» Target position
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1) We randomly select measured wafers from the exposed lots for training & testing
Lot 1 Lot 2 Lot 3 Lot 4
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2b) Wafers for testing

Points used for testing
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1) We randomly select measured wafers from the exposed lots for training & testing
Lot 1 Lot 2 Lot 3 Lot 4

POBOOOOOCOOO®
NN\ NG\ \

2a) Wafers for training

Points used for training

2b) Wafers for testing

aegp

Points used for testing
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1) We randomly select measured wafers from the exposed lots for training & testing
Lot 1 Lot 2 Lot 3 Lot 4

POBOOOOOCOOO®
NN\ NG\ \

2a) Wafers for training

qo5000e

Points used for training Used for cross-validation

2b) Wafers for testing

aegp

Points used for testing
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S . \ > 1) Select random wafers for training & testing Slide 11
« To reduce the likelihood of overfitting Lot 1 Lot2 Lot Lot
the training dataset, a Bayesian - SN NGRON ‘ ‘ ® O O ‘ @
frameV\/.Ol"k.WIth aUtomated 2a) Wafers for training 2b) Wafers for testmg\
regularization is employed =
Q " ‘ ‘” Not Used |-~
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« To reduce the likelihood of overfitting Lot
the training dataset, a Bayesian . ' ‘
framework with automated 22 WRIBFSO i
regularization is employed

* The training process repeats in cycles
until convergence, which is when the

a Training with Bayesian Automated Regularization

— 1) Select random wafers for training & testing

Lot 2 Lot3

fe3sess

LPomts used for training |

| Used for cross-validation I

sum-squared error, the sum squared
weights, and the effective number of

\
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Lot4

2b) Wafers for testing \

Not Used
N ¥ ¥

I Points used for testing ]

3
parameters reach a constant value or / \
till the cycle limit is reached 2r

« If the cycle limit is reached before

convergence a new random sample of de, 4°
points is selected for training and Qe
cross-validation points within the R o

Output and Target
<

training dataset, while starting
iterations toward convergence where =2
the previous cycle stopped
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Example of training process
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> Prediction Vs. Measured Overlay as regression plots

— + Point-to-point correlation between the functions predicted Output vs. Measured

Input

Wafer Alignment metrology
1 for all colors (NIR, FIR, red, green)

+ Residuals with respect to color &
model used
+ Wafer quality " .
» Function /:

2 | Wafer Leveling metrology }——Nr 3 inputs

» 1 output
TWINSCAN Context
3 + Chuck number

+ Field position
+ Target position
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— + Point-to-point correlation between the functions predicted Output vs. Measured Side 15

Measured Overla
s Output | A

Wafer Alignment metrology pr A
1 for all colors (NIR, FIR, red, green) W Fe

+ Residuals with respect to color & M 7 v 4%
model used LS
+ Wafer quality 5 X PR it o
» Function , R B
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1 output \f, ¢~
TWINSCAN Context 5 .
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Training Lots Testing Lots

Training Lots Overlay X: R=0.88125 Training Lots Overlay Y: R=0.6583 Testing Lots Overlay X: R=0.86675 Testing Lots Overlay Y: R=0.63485
o o

O Data
—Fit
Y=T

0.78*Target + -0.15 l
0.46'Target +0.42 |

g

| Output~=052'Target +0.36 |

| Output~=0.75'Target +-0.16 |

I Output ~
I Output ~;
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« Point-to-point correlation between the functions predicted Qutput vs. Measured Side 16

« Wafers from both the Training and Testing Groups are used

1) Select random wafers for training & testing
Lot 1

Lot3
2a) Wafers for training

Gepsesy

I Points used for training I | Used for cross-validation |

Input

Lol 2 Lot4

Wafer Alignment metrology / o / \

1 for all colors (NIR, FIR, red, green)

+ Residuals with respect to color &
model used
+ Wafer quality y .
¥ Function /:

2 | Wafer Leveling metrology }—N 3 inputs

» 1 output
TWINSCAN Context
3 + Chuck number

« Field position
+ Target position

2b) Wafers for testing \

ssp

I Points used for testing I

Training Lots Testing Lots

Training Lots Overlay X: R=0.88125 Training Lots Overlay Y: R=0.6583 Testing Lots Overlay X: R=0.86675 Testing Lots Overlay Y: R=0.63485
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— + Because the Testing group of wafers are “blind” to the training process siide 17
we can use R-values to judge the performance of the trained function.

* R-values of the testing wafers = to the R-values of the training wafers.
« Overlay X (0.88) and Y (0.66) of the training wafers
* Overlay X (0.87) and Y (0.63) of the testing wafers

« From this we conclude that the network generalized well with the
automated regularization algorithm.

Training Lots Testing Lots

Training Lots Overlay X: R=0.88125
o

Training Lots Overlay Y: R=0.6583 Testing Lots Overlay X: R=0.86675 Testing Lots Overlay Y: R=0.63485
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' Precision of Trained Function as a vector map

* Noise between the measured and predicted overlay is relatively
consistent for both Training and Testing groups

» Consider the error as a plus or minus contribution per wafer coordinate
position of any prediction from the trained function

s
7 4 4
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'Training Lots /
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3
¥ .

Point - Point delta
between a) and b)
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> Results — Measured Data ASML

— . SK hynix provided the on product overlay data for our proof book analysis.

for the 20nm DRAM layer was as it was
prepared for high volume production

Black lines denote start and end to lot Green lines denote wafers testing group
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— + Measured, Predicted & Residual Integrated Metrology (IM) [veasured Testng w705 | e 22
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— » With the Predictions we identify jumps in the overlay data where g,:"d”s
process was intentionally manipulated by the integration team SK hynix

Predicte: 193 (F2N)
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residual m3s (nm)

Conclusion 2 ASML
- With Residuals we flag wafers from IM. Siae 25

|
« Something other then inputs we trained with is effecting the overlay signature SK,":ynix
» This can be used to remove a wafer from APC or to trigger an investigation
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~ « Work on this subject is open to users with interest in exploring
the application, both in production and development
environments

» Topics of interest include exploring effect;

« Fab context from outside the lithocluster has on the overlay
prediction

* Increasing the number of parallel works and neurons has toward
improving the R value (correlation coefficient) between the predicted
output and target values in the testing dataset
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