

# Target-Independent Component-Based Design for Automated Driving Systems

### Siddharth D'Silva & Eugene Kagan

MathWorks Automotive Conference

May 12, 2016



## **Autoliv – An Industry Pioneer for 60+ Years in Automotive Safety**





## **Autoliv – A Complete System Safety Supplier**





## The Automated Driving System Team Roadmap





## The Road to Autonomous Driving



## **Autoliv's Current Footprint Within the Automated Driving Pyramid**





## How does an OEM view us in the Domain of Automated Driving?

- Are we a radar sensor supplier?
- Are we a camera sensor supplier?
- Are we an ECU supplier?
- Are we an active safety feature supplier?
- Are we a system software supplier?
- Are we software integrators?
- Are we a full active safety system supplier?
- Are we collaborators on future system designs?

## The answer is Yes to all



## **Example Real-Life Customer Pursuits**



**Camera: Supplier A** 

Feature Set: Supplier A/OEM

**Integration ECU: Camera** 

**Feature Integrator: Supplier A** 

OEM B



**Camera: Supplier A** 

Radar: Supplier B

**Fusion: Supplier B** 

**Feature Set: OEM** 

**Integration ECU: Radar** 

**Feature Integrator: Supplier B** 

OEM C



**Camera: Supplier A** 

**Radar: Supplier B** 

**Fusion: Supplier C** 

Feature Set: OEM/Supplier C

**Integration ECU: ADAS ECU** 

**Feature Integrator: Supplier C** 



## The Autoliv Software Integration Workflow











## Challenges of Model Based Design and Software Integration

- Multiple internal development sites across the world
  - Local constraints on access to tools
- Autoliv is participating in several co-development activities involving multiple external parties
  - Bi-directional exchange of models
  - Incompatible development environments
- A single project may see multiple integration platforms
  - E.g. PC Simulation and replay, 3<sup>rd</sup> party simulation environments
  - E.g. Real-time platforms: RCP, production target ECU
- Variety of Component formats for integration
  - Simulink Models: white box and IP protected
  - C source files
  - Object files
- Subject matter expert challenge
  - Subject matter expertize versus "know it all"











## Autoliv's Approach using the MathWorks Suite

#### Packaging Internal Software Components for re-use in multiple projects

- Explicit boundary and external dependency
- Clear separation between the function and the data

#### Establishing a framework for multi-site development of feature content

- Uniform MBD project setup with a foundation in common and portable project configuration/build system.
- Scalability: Not every development site will need a full project toolset

#### Supporting multiple integration platforms

- Target independence in defining a component functionality and data
- Custom toolset for mapping component functionality and data onto a target platform

#### Collaborating with external companies

- Flexibility in accepting model formats and content packages from external collaborators
- Provisioning for mapping external deliveries to the selected targets

#### Encouraging subject matter expertise

Let the experts concentrate on what they know and do the best



# **Software Component Packaging**





## **Software Component Packaging**





# What is Target Independence?

- The component owner should primarily care about its design & functionality
  - Proper representation of the execution model: E.g. floating point versus fixed point designs
  - Simulink-based component is delivered without the assumption of an integration environment
- Enforcing adherence to internal modeling standards
- All component relevant data sets are defined in the generic form
  - E.g. generic Matlab variables (discouraged)
  - E.g Simulink.Parameter objects without specification of Custom Storage Classes
- Existence of well established transformation rules
  - E.g. Mapping the data and functions onto the various targets
  - E.g. Custom code generation with standardized build toolset

One time adaptation to the vehicle Variant subsystems



# Software Integration of Target Independent Models

- Standardized code-generation toolset should support:
  - Adaptation to incompatible external interfaces
    - Model reference is a good integration unit but....
    - Is it a good re-use unit?
  - Flexible target memory allocation
    - E.g. End-Of-Line calibration
    - E.g. Inline or non-inline constant section
    - E.g. Non-volatile memory
  - Ability to transform models into target platform compatible code
    - E.g. Real-time RCP targets vs. target ECU
    - E.g. AUTOSAR vs. non-AUTOSAR targets







# **Example Success Stories**



- The presented methodology has been successfully applied to the following Autoliv products:
- Passive Restraint System
- Variants of ESC/ESB systems
- Automated Driving applications
  - Mono-Vision AEB System with internal SW components
  - Forward Looking Radar based ACC with external SW components
  - Best in-class ADAS system with Mono-Vison Camera,
    Forward Looking Radar and a combination of mixed internal and external SW components



# **Thank You!**





Every year, Autoliv's products save over 30,000 lives

and prevent ten times as many severe injuries

